Higher asymptotics of the complex Monge-Ampère equation

C. Robin Graham

Compositio Mathematica (1987)

  • Volume: 64, Issue: 2, page 133-155
  • ISSN: 0010-437X

How to cite

top

Robin Graham, C.. "Higher asymptotics of the complex Monge-Ampère equation." Compositio Mathematica 64.2 (1987): 133-155. <http://eudml.org/doc/89872>.

@article{RobinGraham1987,
author = {Robin Graham, C.},
journal = {Compositio Mathematica},
keywords = {strongly pseudoconex boundaries; complex Monge-Ampere equation; biholomorphic invariants},
language = {eng},
number = {2},
pages = {133-155},
publisher = {Martinus Nijhoff Publishers},
title = {Higher asymptotics of the complex Monge-Ampère equation},
url = {http://eudml.org/doc/89872},
volume = {64},
year = {1987},
}

TY - JOUR
AU - Robin Graham, C.
TI - Higher asymptotics of the complex Monge-Ampère equation
JO - Compositio Mathematica
PY - 1987
PB - Martinus Nijhoff Publishers
VL - 64
IS - 2
SP - 133
EP - 155
LA - eng
KW - strongly pseudoconex boundaries; complex Monge-Ampere equation; biholomorphic invariants
UR - http://eudml.org/doc/89872
ER -

References

top
  1. 1 J. Bland, Local boundary behaviour of the canonical Einstein-Kähler metric on pseudo-convex domains, UCLA PhD. thesis, 1982. 
  2. 2 S.-Y. Cheng and S.-T. Yau, On the existence of a complete Kähler metric on noncompact complex manifolds and the regularity of Fefferman's equation, Comm. Pure Appl. Math33 (1980) 507-544. Zbl0506.53031MR575736
  3. 3 S.S. Chern and J. Moser, Real hypersurfaces in complex manifolds, Acta Math.133 (1974) 219-271. Zbl0302.32015MR425155
  4. 4 C. Fefferman, Monge-Ampère equations, the Bergman kernel, and geometry of pseudo-convex domains, Ann. Math.103 (1976) 395-416. Zbl0322.32012MR407320
  5. 5 C. Fefferman, Parabolic invariant theory in complex analysis, Adv. in Math.31 (1979) 131-262. Zbl0444.32013MR526424
  6. 6 R. Graham, Scalar boundary invariants and the Bergman kernel, Proceedings of the Special Year in Complex Analysis, Univ. of Maryland, to appear. Zbl0626.32027
  7. 7 J. Lee, Higher asymptotics of the complex Monge-Ampère equation and geometry of CR-manifolds, MIT PhD. thesis, 1982. 
  8. 8 J. Lee and R. Melrose, Boundary behaviour of the complex Monge-Ampère equation, Acta. Math.148 (1982) 159-192. Zbl0496.35042MR666109
  9. 9 R. Melrose, Transformation of boundary problems, Acta. Math.147 (1981) 149-236. Zbl0492.58023MR639039

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.