Centrality and normality in protomodular categories.
In this note we determine explicit formulas for the relative commutator of groups with respect to the subvarieties of -nilpotent groups and of -solvable groups. In particular these formulas give a characterization of the extensions of groups that are central relatively to these subvarieties.
We develop a theory of split extensions of unitary magmas, which includes defining such extensions and describing them via suitably defined semidirect product, yielding an equivalence between the categories of split extensions and of (suitably defined) actions of unitary magmas on unitary magmas. The class of split extensions is pullback stable but not closed under composition. We introduce two subclasses of it that have both of these properties.
Page 1