Let be a complex reductive group. We give a description both of domains and plurisubharmonic functions, which are invariant by the compact group, , acting on by (right) translation. This is done in terms of curvature of the associated Riemannian symmetric space . Such an invariant domain with a smooth boundary is Stein if and only if the corresponding domain is geodesically convex and the sectional curvature of its boundary fulfills the condition . The term is explicitly computable...
A real form of a complex semi-simple Lie group has only finitely many orbits in any given -flag manifold . The complex geometry of these orbits is of interest, e.g., for the associated representation theory. The open orbits generally possess only the constant holomorphic functions, and the relevant associated geometric objects are certain positive-dimensional compact complex submanifolds of which, with very few well-understood exceptions, are parameterized by the Wolf cycle domains in...
Download Results (CSV)