The aim of this note is to give a complete description of the positive additive functions for the stable nonperiodic translation quivers with finitely many orbits. In particular, we show that all positive additive functions on the stable translation quivers of Euclidean type (respectively, of wild type) are periodic, and hence bounded (respectively, are unbounded, and hence nonperiodic).
In the paper, we introduce a wide class of domestic finite dimensional algebras over an algebraically closed field which are obtained from the hereditary algebras of Euclidean type , n≥1, by iterated one-point extensions by two-ray modules. We prove that these algebras are domestic and their Auslander-Reiten quivers admit infinitely many nonperiodic connected components with infinitely many orbits with respect to the action of the Auslander-Reiten translation. Moreover, we exhibit a wide class of...
In continuation of our earlier work [2] we describe the indecomposable representations and the Auslander-Reiten quivers of a family of vector space categories playing an important role in the study of domestic finite dimensional algebras over an algebraically closed field. The main results of the paper are applied in our paper [3] where we exhibit a wide class of almost sincere domestic simply connected algebras of arbitrary large finite global dimensions and describe their Auslander-Reiten quivers....
We give a complete description of finite-dimensional selfinjective algebras of Euclidean tilted type over an algebraically closed field whose all nonperiodic Auslander-Reiten components are almost regular. In particular, we describe the tame selfinjective finite-dimensional algebras whose all nonperiodic Auslander-Reiten components are almost regular and generalized standard.
We classify, up to derived (equivalently, tilting-cotilting) equivalence, all nondegenerate gentle two-cycle algebras. We also give a partial classification and formulate a conjecture in the degenerate case.
We show that the types of singularities of Schubert varieties in the flag varieties Flagₙ, n ∈ ℕ, are equivalent to the types of singularities of orbit closures for the representations of Dynkin quivers of type 𝔸. Similarly, we prove that the types of singularities of Schubert varieties in products of Grassmannians Grass(n,a) × Grass(n,b), a, b, n ∈ ℕ, a, b ≤ n, are equivalent to the types of singularities of orbit closures for the representations of Dynkin quivers of type 𝔻. We also show that...
The main aim of the paper is to classify the discrete derived categories of bounded complexes of modules over finite dimensional algebras.
Download Results (CSV)