Geometry of modules over tame quasi-tilted algebras
Grzegorz Bobiński; Andrzej Skowroński
Colloquium Mathematicae (1999)
- Volume: 79, Issue: 1, page 85-118
- ISSN: 0010-1354
Access Full Article
topHow to cite
topBobiński, Grzegorz, and Skowroński, Andrzej. "Geometry of modules over tame quasi-tilted algebras." Colloquium Mathematicae 79.1 (1999): 85-118. <http://eudml.org/doc/210630>.
@article{Bobiński1999,
author = {Bobiński, Grzegorz, Skowroński, Andrzej},
journal = {Colloquium Mathematicae},
keywords = {finite dimensional algebras; categories of finitely generated left modules; affine varieties; tame quasi-tilted algebras; directing modules; complete intersections},
language = {eng},
number = {1},
pages = {85-118},
title = {Geometry of modules over tame quasi-tilted algebras},
url = {http://eudml.org/doc/210630},
volume = {79},
year = {1999},
}
TY - JOUR
AU - Bobiński, Grzegorz
AU - Skowroński, Andrzej
TI - Geometry of modules over tame quasi-tilted algebras
JO - Colloquium Mathematicae
PY - 1999
VL - 79
IS - 1
SP - 85
EP - 118
LA - eng
KW - finite dimensional algebras; categories of finitely generated left modules; affine varieties; tame quasi-tilted algebras; directing modules; complete intersections
UR - http://eudml.org/doc/210630
ER -
References
top- [1] I. Assem, A. Skowroński and B. Tomé, Coil enlargements of algebras, Tsukuba J. Math. 19 (1995), 453-479. Zbl0860.16014
- [2] M. Auslander, I. Reiten and S. O. Smalο, Representation Theory of Artin Algebras, Cambridge Stud. Adv. Math. 36, Cambridge Univ. Press, 1994.
- [3] G. Bobiński and A. Skowroński, Geometry of directing modules over tame algebras, preprint, Toruń, 1998. Zbl0965.16009
- [4] K. Bongartz, Algebras and quadratic forms, J. London Math. Soc. 28 (1983), 461-469. Zbl0532.16020
- [5] K. Bongartz, A geometric version of the Morita equivalence, J. Algebra 139 (1991), 159-171. Zbl0787.16011
- [6] K. Bongartz, Minimal singularites of Dynkin quivers, Comment. Math. Helv. 69 (1994), 575-611. Zbl0832.16008
- [7] K. Bongartz, On degenerations and extensions of finite dimensional modules, Adv. Math. 121 (1996), 245-287. Zbl0862.16007
- [8] K. Bongartz, Some geometric aspects of representation theory, in: Proc. Workshop ICRA VIII (Trondheim 1996), CMS Conf. Proc., in press. Zbl0915.16008
- [9] C. de Concini and E. Strickland, On the variety of complexes, Adv. Math. 41 (1981), 57-77. Zbl0471.14026
- [10] W. W. Crawley-Boevey, On tame algebras and bocses, Proc. London Math. Soc. 56 (1988), 451-483. Zbl0661.16026
- [11] D Yu. A. Drozd, Tame and wild matrix problems, in: Lecture Notes in Math. 832, Springer, 1980, 242-258.
- [12] D. Eisenbud, Commutative Algebra with a View toward Algebraic Geometry, Grad. Texts in Math. 150, Springer, 1996.
- [13] P. Gabriel, Finite representation type is open, in: Lecture Notes in Math. 488, Springer, 1975, 132-155.
- [14] P. Gabriel, Auslander-Reiten sequences and representation-finite algebras, in: Lecture Notes in Math. 831, Springer, 1979, 1-71.
- [15] D. Happel, I. Reiten and S. O. Smalο, Tilting in abelian categories and quasitilted algebras, Mem. Amer. Math. Soc. 575 (1996). Zbl0849.16011
- [16] R. Hartshorne, Introduction to Algebraic Geometry, Springer, 1977. Zbl0367.14001
- [17] V. G. Kac, Infinite root systems, representations of graphs and invariant theory, Invent. Math. 56 (1980), 57-92. Zbl0427.17001
- [18] O. Kerner, Tilting wild algebras, J. London Math. Soc. 39 (1989), 29-47. Zbl0675.16013
- [19] H. Kraft, Geometrische Methoden in der Invariantentheorie, Vieweg, 1984.
- [20] H. Kraft, Geometric methods in representation theory, in: Lecture Notes in Math. 944, Springer, 1981, 180-258.
- [21] H. Kraft and C. Procesi, Closures of conjugacy classes of matrices are normal, Invent. Math. 53 (1978), 227-247. Zbl0434.14026
- [22] H. Lenzing and J. A. de la Peña, Concealed-canonical algebras and separating tubular families, Proc. London Math. Soc., in press. Zbl1035.16009
- [23] J. A. de la Peña, On the dimension of the module-varieties of tame and wild algebras, Comm. Algebra 19 (1991), 1795-1807. Zbl0818.16013
- [24] J. A. de la Peña, Tame algebras with sincere directing modules, J. Algebra 161 (1993), 171-185. Zbl0808.16018
- [25] J. A. de la Peña, The families of two-parametric tame algebras with sincere directing modules, in: CMS Conf. Proc. 14 (1993), 361-392. Zbl0799.16016
- [26] J. A. de la Peña and A. Skowroński, Geometric and homological characterizations of polynomial growth strongly simply connected algebras, Invent. Math. 126 (1996), 287-296. Zbl0883.16007
- [27] C. M. Ringel, The rational invariants of the tame quivers, Invent. Math. 58 (1980), 217-239. Zbl0433.15009
- [28] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, 1984.
- [29] I. R. Shafarevich, Basic Algebraic Geometry, Grad. Texts in Math. 213, Springer, 1977.
- [30] A. Skowroński, Tame quasi-tilted algebras, J. Algebra 203 (1998), 470-490. Zbl0908.16013
- [31] A. Skowroński and G. Zwara, Degenerations for indecomposable modules and tame algebras, Ann. Sci. École Norm. Sup. 31 (1998), 153-180. Zbl0915.16011
- [32] D. Voigt, Induzierte Darstellungen in der Theorie der endlichen, algebraischen Gruppen, Lecture Notes in Math. 336, Springer, 1977. Zbl0374.14010
- [33] G. Zwara, Degenerations of finite dimensional modules are given by extensions, preprint, Toruń, 1998.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.