Geometry of modules over tame quasi-tilted algebras

Grzegorz Bobiński; Andrzej Skowroński

Colloquium Mathematicae (1999)

  • Volume: 79, Issue: 1, page 85-118
  • ISSN: 0010-1354

How to cite

top

Bobiński, Grzegorz, and Skowroński, Andrzej. "Geometry of modules over tame quasi-tilted algebras." Colloquium Mathematicae 79.1 (1999): 85-118. <http://eudml.org/doc/210630>.

@article{Bobiński1999,
author = {Bobiński, Grzegorz, Skowroński, Andrzej},
journal = {Colloquium Mathematicae},
keywords = {finite dimensional algebras; categories of finitely generated left modules; affine varieties; tame quasi-tilted algebras; directing modules; complete intersections},
language = {eng},
number = {1},
pages = {85-118},
title = {Geometry of modules over tame quasi-tilted algebras},
url = {http://eudml.org/doc/210630},
volume = {79},
year = {1999},
}

TY - JOUR
AU - Bobiński, Grzegorz
AU - Skowroński, Andrzej
TI - Geometry of modules over tame quasi-tilted algebras
JO - Colloquium Mathematicae
PY - 1999
VL - 79
IS - 1
SP - 85
EP - 118
LA - eng
KW - finite dimensional algebras; categories of finitely generated left modules; affine varieties; tame quasi-tilted algebras; directing modules; complete intersections
UR - http://eudml.org/doc/210630
ER -

References

top
  1. [1] I. Assem, A. Skowroński and B. Tomé, Coil enlargements of algebras, Tsukuba J. Math. 19 (1995), 453-479. Zbl0860.16014
  2. [2] M. Auslander, I. Reiten and S. O. Smalο, Representation Theory of Artin Algebras, Cambridge Stud. Adv. Math. 36, Cambridge Univ. Press, 1994. 
  3. [3] G. Bobiński and A. Skowroński, Geometry of directing modules over tame algebras, preprint, Toruń, 1998. Zbl0965.16009
  4. [4] K. Bongartz, Algebras and quadratic forms, J. London Math. Soc. 28 (1983), 461-469. Zbl0532.16020
  5. [5] K. Bongartz, A geometric version of the Morita equivalence, J. Algebra 139 (1991), 159-171. Zbl0787.16011
  6. [6] K. Bongartz, Minimal singularites of Dynkin quivers, Comment. Math. Helv. 69 (1994), 575-611. Zbl0832.16008
  7. [7] K. Bongartz, On degenerations and extensions of finite dimensional modules, Adv. Math. 121 (1996), 245-287. Zbl0862.16007
  8. [8] K. Bongartz, Some geometric aspects of representation theory, in: Proc. Workshop ICRA VIII (Trondheim 1996), CMS Conf. Proc., in press. Zbl0915.16008
  9. [9] C. de Concini and E. Strickland, On the variety of complexes, Adv. Math. 41 (1981), 57-77. Zbl0471.14026
  10. [10] W. W. Crawley-Boevey, On tame algebras and bocses, Proc. London Math. Soc. 56 (1988), 451-483. Zbl0661.16026
  11. [11] D Yu. A. Drozd, Tame and wild matrix problems, in: Lecture Notes in Math. 832, Springer, 1980, 242-258. 
  12. [12] D. Eisenbud, Commutative Algebra with a View toward Algebraic Geometry, Grad. Texts in Math. 150, Springer, 1996. 
  13. [13] P. Gabriel, Finite representation type is open, in: Lecture Notes in Math. 488, Springer, 1975, 132-155. 
  14. [14] P. Gabriel, Auslander-Reiten sequences and representation-finite algebras, in: Lecture Notes in Math. 831, Springer, 1979, 1-71. 
  15. [15] D. Happel, I. Reiten and S. O. Smalο, Tilting in abelian categories and quasitilted algebras, Mem. Amer. Math. Soc. 575 (1996). Zbl0849.16011
  16. [16] R. Hartshorne, Introduction to Algebraic Geometry, Springer, 1977. Zbl0367.14001
  17. [17] V. G. Kac, Infinite root systems, representations of graphs and invariant theory, Invent. Math. 56 (1980), 57-92. Zbl0427.17001
  18. [18] O. Kerner, Tilting wild algebras, J. London Math. Soc. 39 (1989), 29-47. Zbl0675.16013
  19. [19] H. Kraft, Geometrische Methoden in der Invariantentheorie, Vieweg, 1984. 
  20. [20] H. Kraft, Geometric methods in representation theory, in: Lecture Notes in Math. 944, Springer, 1981, 180-258. 
  21. [21] H. Kraft and C. Procesi, Closures of conjugacy classes of matrices are normal, Invent. Math. 53 (1978), 227-247. Zbl0434.14026
  22. [22] H. Lenzing and J. A. de la Peña, Concealed-canonical algebras and separating tubular families, Proc. London Math. Soc., in press. Zbl1035.16009
  23. [23] J. A. de la Peña, On the dimension of the module-varieties of tame and wild algebras, Comm. Algebra 19 (1991), 1795-1807. Zbl0818.16013
  24. [24] J. A. de la Peña, Tame algebras with sincere directing modules, J. Algebra 161 (1993), 171-185. Zbl0808.16018
  25. [25] J. A. de la Peña, The families of two-parametric tame algebras with sincere directing modules, in: CMS Conf. Proc. 14 (1993), 361-392. Zbl0799.16016
  26. [26] J. A. de la Peña and A. Skowroński, Geometric and homological characterizations of polynomial growth strongly simply connected algebras, Invent. Math. 126 (1996), 287-296. Zbl0883.16007
  27. [27] C. M. Ringel, The rational invariants of the tame quivers, Invent. Math. 58 (1980), 217-239. Zbl0433.15009
  28. [28] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, 1984. 
  29. [29] I. R. Shafarevich, Basic Algebraic Geometry, Grad. Texts in Math. 213, Springer, 1977. 
  30. [30] A. Skowroński, Tame quasi-tilted algebras, J. Algebra 203 (1998), 470-490. Zbl0908.16013
  31. [31] A. Skowroński and G. Zwara, Degenerations for indecomposable modules and tame algebras, Ann. Sci. École Norm. Sup. 31 (1998), 153-180. Zbl0915.16011
  32. [32] D. Voigt, Induzierte Darstellungen in der Theorie der endlichen, algebraischen Gruppen, Lecture Notes in Math. 336, Springer, 1977. Zbl0374.14010
  33. [33] G. Zwara, Degenerations of finite dimensional modules are given by extensions, preprint, Toruń, 1998. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.