The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

On sums and products in a field

Guang-Liang ZhouZhi-Wei Sun — 2022

Czechoslovak Mathematical Journal

We study sums and products in a field. Let F be a field with ch ( F ) 2 , where ch ( F ) is the characteristic of F . For any integer k 4 , we show that any x F can be written as a 1 + + a k with a 1 , , a k F and a 1 a k = 1 , and that for any α F { 0 } we can write every x F as a 1 a k with a 1 , , a k F and a 1 + + a k = α . We also prove that for any x F and k { 2 , 3 , } there are a 1 , , a 2 k F such that a 1 + + a 2 k = x = a 1 a 2 k .

Sum of higher divisor function with prime summands

Yuchen DingGuang-Liang Zhou — 2023

Czechoslovak Mathematical Journal

Let l 2 be an integer. Recently, Hu and Lü offered the asymptotic formula for the sum of the higher divisor function 1 n 1 , n 2 , ... , n l x 1 / 2 τ k ( n 1 2 + n 2 2 + + n l 2 ) , where τ k ( n ) represents the k th divisor function. We give the Goldbach-type analogy of their result. That is to say, we investigate the asymptotic behavior of the sum 1 p 1 , p 2 , ... , p l x τ k ( p 1 + p 2 + + p l ) , where p 1 , p 2 , , p l are prime variables.

Page 1

Download Results (CSV)