The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 9 of 9

Showing per page

Order by Relevance | Title | Year of publication

Metrics in the set of partial isometries with finite rank

Esteban AndruchowGustavo Corach — 2005

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Let I be the set of partial isometries with finite rank of an infinite dimensional Hilbert space H . We show that I is a smooth submanifold of the Hilbert space B 2 H of Hilbert-Schmidt operators of H and that each connected component is the set I N , which consists of all partial isometries of rank N < . Furthermore, I is a homogeneous space of U × U , where U is the classical Banach-Lie group of unitary operators of H , which are Hilbert-Schmidt perturbations of the identity. We introduce two Riemannian metrics...

Geometry of oblique projections

E. AndruchowGustavo CorachD. Stojanoff — 1999

Studia Mathematica

Let A be a unital C*-algebra. Denote by P the space of selfadjoint projections of A. We study the relationship between P and the spaces of projections P a determined by the different involutions a induced by positive invertible elements a ∈ A. The maps φ : P P a sending p to the unique q P a with the same range as p and Ω a : P a P a sending q to the unitary part of the polar decomposition of the symmetry 2q-1 are shown to be diffeomorphisms. We characterize the pairs of idempotents q,r ∈ A with ||q-r|| < 1 such that...

A note on the differentiable structure of generalized idempotents

Esteban AndruchowGustavo CorachMostafa Mbekhta — 2013

Open Mathematics

For a fixed n > 2, we study the set Λ of generalized idempotents, which are operators satisfying T n+1 = T. Also the subsets Λ†, of operators such that T n−1 is the Moore-Penrose pseudo-inverse of T, and Λ*, of operators such that T n−1 = T* (known as generalized projections) are studied. The local smooth structure of these sets is examined.

A classification of projectors

Gustavo CorachAlejandra MaestripieriDemetrio Stojanoff — 2005

Banach Center Publications

A positive operator A and a closed subspace of a Hilbert space ℋ are called compatible if there exists a projector Q onto such that AQ = Q*A. Compatibility is shown to depend on the existence of certain decompositions of ℋ and the ranges of A and A 1 / 2 . It also depends on a certain angle between A() and the orthogonal of .

Characterization of Bessel sequences.

M. Laura AriasGustavo CorachMiriam Pacheco — 2007

Extracta Mathematicae

Let H be a separable Hilbert space, L(H) be the algebra of all bounded linear operators of H and (H) be the set of all Bessel sequences of H. Fixed an orthonormal basis E = {e} of H, a bijection α: (H) → L(H) can be defined. The aim of this paper is to characterize α (A) for different classes of operators A ⊆ L(H). In particular, we characterize the Bessel sequences associated to injective operators, compact operators and Schatten p-classes.

Page 1

Download Results (CSV)