Currently displaying 1 – 5 of 5

Showing per page

Order by Relevance | Title | Year of publication

Enveloppe galoisienne d'une application rationnelle de P1.

Guy Casale — 2006

Publicacions Matemàtiques

In 2001, B. Malgrange defines the D-envelope or galoisian envelope of an analytical dynamical system. Roughly speaking, this is the algebraic hull of the dynamical system. In this short article, the D-envelope of a rational map R: P1 --> P1 is computed. The rational maps characterised by a finitness property of their D-envelope appear to be the integrable ones.

Feuilletages singuliers de codimension un, groupoïde de Galois et intégrales premières

Guy Casale — 2006

Annales de l’institut Fourier

Dans cet article, nous étudions le groupoïde de Galois d’un germe de feuilletage holomorphe de codimension un. Nous associons à ce 𝒟 -groupoïde de Lie un invariant biméromorphe  : le rang transverse. Nous étudions en détails les relations entre cet invariant, l’existence de suites de Godbillon-Vey particulières et l’existence d’une intégrale première dans une extension fortement normale du corps différentiel des germes de fonctions méromorphes. Nous obtenons ainsi une généralisation d’un théorème...

Morales-Ramis Theorems Malgrange pseudogroup

Guy Casale — 2009

Annales de l’institut Fourier

In this article we give an obstruction to integrability by quadratures of an ordinary differential equation on the differential Galois group of variational equations of any order along a particular solution. In Hamiltonian situation the condition on the Galois group gives Morales-Ramis-Simó theorem. The main tools used are Malgrange pseudogroup of a vector field and Artin approximation theorem.

Liouvillian first integrals of differential equations

Guy Casale — 2011

Banach Center Publications

In this paper we generalize to any dimension and codimension some theorems about existence of Liouvillian solutions or first integrals proved by M. Singer in Liouvillian first integrals of differential equations (1992) for first order differential equations.

Page 1

Download Results (CSV)