The following problem motivated by investigation of databases is studied. Let
be a q-ary code of length n with the properties that
has minimum distance at least n − k + 1, and for any set of k − 1 coordinates there exist two codewords that agree exactly there. Let f(q, k)be the maximum n for which such a code exists. f(q, k)is bounded by linear functions of k and q, and the exact values for special k and qare determined.
A set system is called t-intersecting if every two members meet each other in at least t elements. Katona determined the minimum ratio of the shadow and the size of such families and showed that the Erdős-Ko-Rado theorem immediately follows from this result. The aim of this note is to reproduce the proof to obtain a slight improvement in the Kneser graph. We also give a brief overview of corresponding results.
The energy of a molecular graph G is defined as the summation of the absolute values of the eigenvalues of adjacency matrix of a graph G. In this paper, an infinite class of fullerene graphs with 10n vertices, n ≥ 2, is considered. By proving centrosymmetricity of the adjacency matrix of these fullerene graphs, a lower bound for its energy is given. Our method is general and can be extended to other class of fullerene graphs.
Download Results (CSV)