Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjecture in dimension three. H. Hofer — 1993 Inventiones mathematicae
Lusternik-Schnirelman-theory for lagrangian intersections H. Hofer — 1988 Annales de l'I.H.P. Analyse non linéaire
Symplectic topology and hamiltonian dynamics I. Ekeland; H. Hofer Séminaire Équations aux dérivées partielles (Polytechnique)
Coherent orientations for periodic orbit problems in symplectic geometry. H. Hofer; A. Floer — 1993 Mathematische Zeitschrift
Periodic Solutions on hypersurfaces and a result by C. Viterbo. H. Hofer; E. Zehnder — 1987 Inventiones mathematicae
Periodic solutions with prescribed minimal period for convex autonomous hamiltonian systems. H. Hofer; I. Ekeland — 1985 Inventiones mathematicae
Towards the Definition of Symplectic Boundary. H. Hofer; Y. Eliashberg — 1992 Geometric and functional analysis
First order elliptic systems and the existence of homoclinic orbits in Hamiltonian systems. H. Hofer; K. Wysocki — 1990 Mathematische Annalen
The Weinstein conjecture in cotangent bundles and related results H. Hofer; C. Viterbo — 1988 Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Symplectic homology II. A general construction. H. Hofer; A. Floer; K. Cieliebak — 1995 Mathematische Zeitschrift
Applications of symplectic homology I. H. Hofer; K. Wysocki; A. Floer — 1994 Mathematische Zeitschrift
Properties of Pseudo-holomorphic Curves in Symplectisations II: Embedding Controls and Algebraic Invariants. H. Hofer; K. Wysocki; E. Zehnder — 1995 Geometric and functional analysis
Lagrangian Intersections in Contact Geometry. H. Hofer; Y. Eliashberg; D. Salamon — 1995 Geometric and functional analysis
Properties of pseudoholomorphic curves in symplectisations. I : asymptotics H. Hofer; K. Wysocki; E. Zehnder — 1996 Annales de l'I.H.P. Analyse non linéaire
Correction to “Properties of pseudoholomorphic curves in symplectisations. I : asymptotics” H. Hofer; K. Wysocki; E. Zehnder — 1998 Annales de l'I.H.P. Analyse non linéaire
Compactness results in symplectic field theory. Bourgeois, F.; Eliashberg, Y.; Hofer, H.; Wysocki, K.; Zehnder, E. — 2003 Geometry & Topology