The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 7 of 7

Showing per page

Order by Relevance | Title | Year of publication

Singular holomorphic functions for which all fibre-integrals are smooth

D. BarletH. Maire — 2000

Annales Polonici Mathematici

For a germ (X,0) of normal complex space of dimension n + 1 with an isolated singularity at 0 and a germ f: (X,0) → (ℂ,0) of holomorphic function with df(x) ≤ 0 for x ≤ 0, the fibre-integrals     s f = s ϱ ω ' ω ' ' ¯ , ϱ C c ( X ) , ω ' , ω ' ' Ω X n , are C on ℂ* and have an asymptotic expansion at 0. Even when f is singular, it may happen that all these fibre-integrals are C . We study such maps and build a family of examples where also fibre-integrals for ω ' , ω ' ' X , the Grothendieck sheaf, are C .

Page 1

Download Results (CSV)