The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 9 of 9

Showing per page

Order by Relevance | Title | Year of publication

Zeros of random functions in Bergman spaces

Joel H. Shapiro — 1979

Annales de l'institut Fourier

Suppose μ is a finite positive rotation invariant Borel measure on the open unit disc Δ , and that the unit circle lies in the closed support of μ . For 0 < p < the A μ p is the collection of functions in L p ( μ ) holomorphic on Δ . We show that whenever a Gaussian power series f ( z ) = Σ ζ n a n z n almost surely lies in A μ p but not in q > p A μ p , then almost surely: a) the zero set Z ( f ) of f is not contained in any A μ q zero set ( q > p , and b) Z ( f + 1 ) Z ( f - 1 ) is not contained in any A μ q zero set.

Some properties of N-supercyclic operators

P. S. BourdonN. S. FeldmanJ. H. Shapiro — 2004

Studia Mathematica

Let T be a continuous linear operator on a Hausdorff topological vector space 𝓧 over the field ℂ. We show that if T is N-supercyclic, i.e., if 𝓧 has an N-dimensional subspace whose orbit under T is dense in 𝓧, then T* has at most N eigenvalues (counting geometric multiplicity). We then show that N-supercyclicity cannot occur nontrivially in the finite-dimensional setting: the orbit of an N-dimensional subspace cannot be dense in an (N+1)-dimensional space. Finally, we show that a subnormal operator...

Cyclic vectors and invariant subspaces for the backward shift operator

R. G. DouglasH. S. ShapiroA. L. Shields — 1970

Annales de l'institut Fourier

The operator U of multiplication by z on the Hardy space H 2 of square summable power series has been studied by many authors. In this paper we make a similar study of the adjoint operator U * (the “backward shift”). Let K f denote the cyclic subspace generated by f ( f H 2 ) , that is, the smallest closed subspace of H 2 that contains { U * n f } ( n 0 ) . If K f = H 2 , then f is called a cyclic vector for U * . Theorem : f is a cyclic vector if and only if there is a function g , meromorphic and of bounded Nevanlinna characteristic...

Page 1

Download Results (CSV)