Comparative approximation in two topologies
Suppose is a finite positive rotation invariant Borel measure on the open unit disc , and that the unit circle lies in the closed support of . For the is the collection of functions in holomorphic on . We show that whenever a Gaussian power series almost surely lies in but not in , then almost surely: a) the zero set of is not contained in any zero set (, and b) is not contained in any zero set.
Let T be a continuous linear operator on a Hausdorff topological vector space 𝓧 over the field ℂ. We show that if T is N-supercyclic, i.e., if 𝓧 has an N-dimensional subspace whose orbit under T is dense in 𝓧, then T* has at most N eigenvalues (counting geometric multiplicity). We then show that N-supercyclicity cannot occur nontrivially in the finite-dimensional setting: the orbit of an N-dimensional subspace cannot be dense in an (N+1)-dimensional space. Finally, we show that a subnormal operator...
The article contains no abstract
The operator of multiplication by on the Hardy space of square summable power series has been studied by many authors. In this paper we make a similar study of the adjoint operator (the “backward shift”). Let denote the cyclic subspace generated by , that is, the smallest closed subspace of that contains . If , then is called a cyclic vector for . Theorem : is a cyclic vector if and only if there is a function , meromorphic and of bounded Nevanlinna characteristic...
Page 1