The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

Ideal amenability of module extensions of Banach algebras

Eshaghi M. GordjiF. HabibianB. Hayati — 2007

Archivum Mathematicum

Let 𝒜 be a Banach algebra. 𝒜 is called ideally amenable if for every closed ideal I of 𝒜 , the first cohomology group of 𝒜 with coefficients in I * is zero, i.e. H 1 ( 𝒜 , I * ) = { 0 } . Some examples show that ideal amenability is different from weak amenability and amenability. Also for n N , 𝒜 is called n -ideally amenable if for every closed ideal I of 𝒜 , H 1 ( 𝒜 , I ( n ) ) = { 0 } . In this paper we find the necessary and sufficient conditions for a module extension Banach algebra to be 2-ideally amenable.

Page 1

Download Results (CSV)