The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 9 of 9

Showing per page

Order by Relevance | Title | Year of publication

On the complexity of Hamel bases of infinite-dimensional Banach spaces

Lorenz Halbeisen — 2001

Colloquium Mathematicae

We call a subset S of a topological vector space V linearly Borel if for every finite number n, the set of all linear combinations of S of length n is a Borel subset of V. It is shown that a Hamel basis of an infinite-dimensional Banach space can never be linearly Borel. This answers a question of Anatoliĭ Plichko.

Families of almost disjoint Hamel bases.

Lorenz Halbeisen — 2005

Extracta Mathematicae

For infinite dimensional Banach spaces X we investigate the maximal size of a family of pairwise almost disjoint normalized Hamel bases of X, where two sets A and B are said to be almost disjoint if the cardinality of A ∩ B is smaller than the cardinality of either A or B.

Ramseyan ultrafilters

Lorenz Halbeisen — 2001

Fundamenta Mathematicae

We investigate families of partitions of ω which are related to special coideals, so-called happy families, and give a dual form of Ramsey ultrafilters in terms of partitions. The combinatorial properties of these partition-ultrafilters, which we call Ramseyan ultrafilters, are similar to those of Ramsey ultrafilters. For example it will be shown that dual Mathias forcing restricted to a Ramseyan ultrafilter has the same features as Mathias forcing restricted to a Ramsey ultrafilter. Further we...

The Josephus problem

Lorenz HalbeisenNorbert Hungerbühler — 1997

Journal de théorie des nombres de Bordeaux

We give explicit non-recursive formulas to compute the Josephus-numbers j ( n , 2 , i ) and j ( n , 3 , i ) and explicit upper and lower bounds for j ( n , k , i ) (where k 4 ) which differ by 2 k - 2 (for k = 4 the bounds are even better). Furthermore we present a new fast algorithm to calculate j ( n , k , i ) which is based upon the mentioned bounds.

On bases in Banach spaces

We investigate various kinds of bases in infinite-dimensional Banach spaces. In particular, we consider the complexity of Hamel bases in separable and non-separable Banach spaces and show that in a separable Banach space a Hamel basis cannot be analytic, whereas there are non-separable Hilbert spaces which have a discrete and closed Hamel basis. Further we investigate the existence of certain complete minimal systems in as well as in separable Banach spaces.

Page 1

Download Results (CSV)