The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Given a graph G, its partially square graph G* is a graph obtained by adding an edge (u,v) for each pair u, v of vertices of G at distance 2 whenever the vertices u and v have a common neighbor x satisfying the condition , where . In the case where G is a claw-free graph, G* is equal to G². We define . We give for hamiltonicity and circumference new sufficient conditions depending on σ° and we improve some known results.
The Grundy number of a graph G is the maximum number k of colors used to color the vertices of G such that the coloring is proper and every vertex x colored with color i, 1 ≤ i ≤ k, is adjacent to (i-1) vertices colored with each color j, 1 ≤ j ≤ i -1. In this paper we give bounds for the Grundy number of some graphs and cartesian products of graphs. In particular, we determine an exact value of this parameter for n-dimensional meshes and some n-dimensional toroidal meshes. Finally, we present an...
H. Kheddouci, J.F. Saclé and M. Woźniak conjectured in 2000 that if a tree T is not a star, then there is an edge-disjoint placement of T into its third power.In this paper, we prove the conjecture for caterpillars.
Let k be a positive integer, Sk and Ck denote, respectively, a star and a cycle of k edges. λKn is the usual notation for the complete multigraph on n vertices and in which every edge is taken λ times. In this paper, we investigate necessary and sufficient conditions for the existence of the decomposition of λKn into edges disjoint of stars Sk’s and cycles Ck’s.
Download Results (CSV)