A Regular Space Without a Uniformly Regular Quasi-Uniformity.
We discuss the connection between the topological entropy and the uniform entropy and answer several open questions from [10, 15]. We also correct several erroneous statements given in [10, 18] without proof.
Costruiamo uno spazio nontransitivo analogo al piano di Kofner. Mentre gli argomenti usati per la costruzione del piano di Kofner si fondano su riflessioni geometriche, le nostre prove si basano su idee combinatorie.
We construct a completely regular ordered space such that is an -space, the topology of is metrizable and the bitopological space is pairwise regular, but not pairwise completely regular. (Here denotes the upper topology and the lower topology of .)
We characterize those Tychonoff quasi-uniform spaces for which the Hausdorff-Bourbaki quasi-uniformity is uniformly locally compact on the family of nonempty compact subsets of . We deduce, among other results, that the Hausdorff-Bourbaki quasi-uniformity of the locally finite quasi-uniformity of a Tychonoff space is uniformly locally compact on if and only if is paracompact and locally compact. We also introduce the notion of a co-uniformly locally compact quasi-uniform space and show...
Page 1