The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

F σ -absorbing sequences in hyperspaces of subcontinua

Helma Gladdines — 1993

Commentationes Mathematicae Universitatis Carolinae

Let 𝒟 denote a true dimension function, i.e., a dimension function such that 𝒟 ( n ) = n for all n . For a space X , we denote the hyperspace consisting of all compact connected, non-empty subsets by C ( X ) . If X is a countable infinite product of non-degenerate Peano continua, then the sequence ( 𝒟 n ( C ( X ) ) ) n = 2 is F σ -absorbing in C ( X ) . As a consequence, there is a homeomorphism h : C ( X ) Q such that for all n , h [ { A C ( X ) : 𝒟 ( A ) n + 1 } ] = B n × Q × Q × , where B denotes the pseudo boundary of the Hilbert cube Q . It follows that if X is a countable infinite product of non-degenerate...

Page 1

Download Results (CSV)