On Locally Symmetrie Homogeneous Domains of Completely Reducible Linear Lie Groups.
A manifold is said to be Hessian if it admits a flat affine connection and a Riemannian metric such that where is a local function. We study cohomology for Hessian manifolds, and prove a duality theorem and vanishing theorems.
A flat affine manifold is said to Hessian if it is endowed with a Riemannian metric whose local expression has the form where is a -function and is an affine local coordinate system. Let be a Hessian manifold. We show that if is homogeneous, the universal covering manifold of is a convex domain in and admits a uniquely determined fibering, whose base space is a homogeneous convex domain not containing any full straight line, and whose fiber is an affine subspace of .
Page 1