The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

Vanishing theorems for compact hessian manifolds

Hirohiko Shima — 1986

Annales de l'institut Fourier

A manifold is said to be Hessian if it admits a flat affine connection D and a Riemannian metric g such that g = D 2 u where u is a local function. We study cohomology for Hessian manifolds, and prove a duality theorem and vanishing theorems.

Homogeneous hessian manifolds

Hirohiko Shima — 1980

Annales de l'institut Fourier

A flat affine manifold is said to Hessian if it is endowed with a Riemannian metric whose local expression has the form g i j = 2 Φ x i x j where Φ is a C -function and { x 1 , ... , x n } is an affine local coordinate system. Let M be a Hessian manifold. We show that if M is homogeneous, the universal covering manifold of M is a convex domain in R n and admits a uniquely determined fibering, whose base space is a homogeneous convex domain not containing any full straight line, and whose fiber is an affine subspace of R n .

Page 1

Download Results (CSV)