The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We consider the nonlinear eigenvalue problem
in with . A condition on indefinite weight function is given so that the problem has a sequence of eigenvalues tending to infinity with decaying eigenfunctions in . A nonexistence result is also given for the case .
We consider the existence of positive solutions of
-pu=g(x)|u|p-2u+h(x)|u|q-2u+f(x)|u|p*-2u(1)
in , where , , , the critical Sobolev exponent, and , . Let be the principal eigenvalue of
-pu=g(x)|u|p-2u in , g(x)|u|p>0, (2)
with the associated eigenfunction. We prove that, if , if and if , then there exist and , such that for and , (1) has at least one positive solution.
Download Results (CSV)