Eigenvalues of the p -Laplacian in 𝐑 N with indefinite weight

Yin Xi Huang

Commentationes Mathematicae Universitatis Carolinae (1995)

  • Volume: 36, Issue: 3, page 519-527
  • ISSN: 0010-2628

Abstract

top
We consider the nonlinear eigenvalue problem - div ( | u | p - 2 u ) = λ g ( x ) | u | p - 2 u in 𝐑 N with p > 1 . A condition on indefinite weight function g is given so that the problem has a sequence of eigenvalues tending to infinity with decaying eigenfunctions in W 1 , p ( 𝐑 N ) . A nonexistence result is also given for the case p N .

How to cite

top

Huang, Yin Xi. "Eigenvalues of the $p$-Laplacian in ${\mathbf {R}}^N$ with indefinite weight." Commentationes Mathematicae Universitatis Carolinae 36.3 (1995): 519-527. <http://eudml.org/doc/247770>.

@article{Huang1995,
abstract = {We consider the nonlinear eigenvalue problem \[ -\operatorname\{div\}(|\{\nabla \} u|^\{p-2\}\{\nabla \} u)=\lambda g(x)|u|^\{p-2\}u \] in $\mathbf \{R\}^N$ with $p>1$. A condition on indefinite weight function $g$ is given so that the problem has a sequence of eigenvalues tending to infinity with decaying eigenfunctions in $\{W^\{1, p\}(\mathbf \{R\}^N)\}$. A nonexistence result is also given for the case $p\ge N$.},
author = {Huang, Yin Xi},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {eigenvalue; the $p$-Laplacian; indefinite weight; $\mathbf \{R\}^N$; -Laplacian; indefinite weight; nonexistence of positive solutions; existence; Lyusternik-Schnirelmann theory},
language = {eng},
number = {3},
pages = {519-527},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Eigenvalues of the $p$-Laplacian in $\{\mathbf \{R\}\}^N$ with indefinite weight},
url = {http://eudml.org/doc/247770},
volume = {36},
year = {1995},
}

TY - JOUR
AU - Huang, Yin Xi
TI - Eigenvalues of the $p$-Laplacian in ${\mathbf {R}}^N$ with indefinite weight
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1995
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 36
IS - 3
SP - 519
EP - 527
AB - We consider the nonlinear eigenvalue problem \[ -\operatorname{div}(|{\nabla } u|^{p-2}{\nabla } u)=\lambda g(x)|u|^{p-2}u \] in $\mathbf {R}^N$ with $p>1$. A condition on indefinite weight function $g$ is given so that the problem has a sequence of eigenvalues tending to infinity with decaying eigenfunctions in ${W^{1, p}(\mathbf {R}^N)}$. A nonexistence result is also given for the case $p\ge N$.
LA - eng
KW - eigenvalue; the $p$-Laplacian; indefinite weight; $\mathbf {R}^N$; -Laplacian; indefinite weight; nonexistence of positive solutions; existence; Lyusternik-Schnirelmann theory
UR - http://eudml.org/doc/247770
ER -

References

top
  1. Anane A., Simplicité et isolation de la première valeur propre du p -laplacien avec poids, C.R. Acad. Sci. Paris 305 I (1987), 725-728. (1987) Zbl0633.35061MR0920052
  2. Azorezo J.P.G., Alonso I.P., Existence and uniqueness for the p -Laplacian: nonlinear eigenvalues, Comm. PDE 12 (1987), 1389-1430. (1987) MR0912211
  3. Brezis H., Kato T., Remarks on the Schrödinger operator with singular complex potentials, J. Math. Pures Appl. 58 (1979), 137-151. (1979) Zbl0408.35025MR0539217
  4. Brown K.J., Cosner C., Fleckinger J., Principal eigenvalues for problems with indefinite weight functions on R N , Proc. Amer. Math. Soc. 109 (1990), 147-156. (1990) MR1007489
  5. Brown K.J., Lin S.S., Tertikas A., Existence and nonexistence of steady-state solutions for a selection-migration model in population genetics, J. Math. Biol. 27 (1989), 91-104. (1989) Zbl0714.92011MR0984228
  6. Gilbarg D., Trudinger N.S., Elliptic Partial Differential Equations of Second Order, 2nd edition, Springer-Verlag, N.Y., 1983. Zbl1042.35002MR0737190
  7. Huang Y.X., On eigenvalue problems of the p -Laplacian with Neumann boundary conditions, Proc. Amer. Math. Soc. 109 (1990), 177-184. (1990) Zbl0715.35061MR1010800
  8. Huang Y.X., Metzen G., The existence of solutions to a class of semilinear differential equations, Diff. Int. Equa., to appear. Zbl0818.34013MR1296134
  9. Lewis J., Smoothness of certain degenerate elliptic equations, Proc. Amer. Math. Soc. 80 (1980), 259-265. (1980) Zbl0455.35064MR0577755
  10. Li Gongbao, Yan Shusen, Eigenvalue problems for quasilinear elliptic equations in R N , Comm. PDE 14 (1989), 1291-1314. (1989) MR1017074
  11. Lindqvist P., On the equation d i v ( | u | p - 2 u ) + λ | u | p - 2 | u = 0 , Proc. Amer. Math. Soc. 109 (1990), 157-164. (1990) Zbl0714.35029MR1007505
  12. Otani M., Teshima T., On the first eigenvalue of some quasilinear elliptic equations, Proc. Japan Acad. Ser. A 64 (1988), 8-10. (1988) Zbl0662.35080MR0953752
  13. Serrin J., Local behavior of solutions of quasilinear equations, Acta Math. 111 (1964), 247-302. (1964) MR0170096
  14. Struwe M., Variational Methods, Springer-Verlag, Berlin, 1990. MR1078018
  15. Szulkin A., Ljusternik-Schnirelmann theory on C 1 -manifolds, Ann. Inst. Henri Poincaré, Anal. Nonl. 5 (1988), 119-139. (1988) MR0954468
  16. Tolksdorf P., On the Dirichlet problem for quasilinear equations in domains with conical boundary points, Comm. PDE 8 (1983), 773-817. (1983) Zbl0515.35024MR0700735
  17. Trudinger N., On Harnack type inequalities and their application to quasilinear elliptic equations, Comm. Pure Appl. Math. 20 (1967), 721-747. (1967) Zbl0153.42703MR0226198

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.