Eigenvalues of the -Laplacian in with indefinite weight
Commentationes Mathematicae Universitatis Carolinae (1995)
- Volume: 36, Issue: 3, page 519-527
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topHuang, Yin Xi. "Eigenvalues of the $p$-Laplacian in ${\mathbf {R}}^N$ with indefinite weight." Commentationes Mathematicae Universitatis Carolinae 36.3 (1995): 519-527. <http://eudml.org/doc/247770>.
@article{Huang1995,
abstract = {We consider the nonlinear eigenvalue problem \[ -\operatorname\{div\}(|\{\nabla \} u|^\{p-2\}\{\nabla \} u)=\lambda g(x)|u|^\{p-2\}u \]
in $\mathbf \{R\}^N$ with $p>1$. A condition on indefinite weight function $g$ is given so that the problem has a sequence of eigenvalues tending to infinity with decaying eigenfunctions in $\{W^\{1, p\}(\mathbf \{R\}^N)\}$. A nonexistence result is also given for the case $p\ge N$.},
author = {Huang, Yin Xi},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {eigenvalue; the $p$-Laplacian; indefinite weight; $\mathbf \{R\}^N$; -Laplacian; indefinite weight; nonexistence of positive solutions; existence; Lyusternik-Schnirelmann theory},
language = {eng},
number = {3},
pages = {519-527},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Eigenvalues of the $p$-Laplacian in $\{\mathbf \{R\}\}^N$ with indefinite weight},
url = {http://eudml.org/doc/247770},
volume = {36},
year = {1995},
}
TY - JOUR
AU - Huang, Yin Xi
TI - Eigenvalues of the $p$-Laplacian in ${\mathbf {R}}^N$ with indefinite weight
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1995
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 36
IS - 3
SP - 519
EP - 527
AB - We consider the nonlinear eigenvalue problem \[ -\operatorname{div}(|{\nabla } u|^{p-2}{\nabla } u)=\lambda g(x)|u|^{p-2}u \]
in $\mathbf {R}^N$ with $p>1$. A condition on indefinite weight function $g$ is given so that the problem has a sequence of eigenvalues tending to infinity with decaying eigenfunctions in ${W^{1, p}(\mathbf {R}^N)}$. A nonexistence result is also given for the case $p\ge N$.
LA - eng
KW - eigenvalue; the $p$-Laplacian; indefinite weight; $\mathbf {R}^N$; -Laplacian; indefinite weight; nonexistence of positive solutions; existence; Lyusternik-Schnirelmann theory
UR - http://eudml.org/doc/247770
ER -
References
top- Anane A., Simplicité et isolation de la première valeur propre du -laplacien avec poids, C.R. Acad. Sci. Paris 305 I (1987), 725-728. (1987) Zbl0633.35061MR0920052
- Azorezo J.P.G., Alonso I.P., Existence and uniqueness for the -Laplacian: nonlinear eigenvalues, Comm. PDE 12 (1987), 1389-1430. (1987) MR0912211
- Brezis H., Kato T., Remarks on the Schrödinger operator with singular complex potentials, J. Math. Pures Appl. 58 (1979), 137-151. (1979) Zbl0408.35025MR0539217
- Brown K.J., Cosner C., Fleckinger J., Principal eigenvalues for problems with indefinite weight functions on , Proc. Amer. Math. Soc. 109 (1990), 147-156. (1990) MR1007489
- Brown K.J., Lin S.S., Tertikas A., Existence and nonexistence of steady-state solutions for a selection-migration model in population genetics, J. Math. Biol. 27 (1989), 91-104. (1989) Zbl0714.92011MR0984228
- Gilbarg D., Trudinger N.S., Elliptic Partial Differential Equations of Second Order, 2nd edition, Springer-Verlag, N.Y., 1983. Zbl1042.35002MR0737190
- Huang Y.X., On eigenvalue problems of the -Laplacian with Neumann boundary conditions, Proc. Amer. Math. Soc. 109 (1990), 177-184. (1990) Zbl0715.35061MR1010800
- Huang Y.X., Metzen G., The existence of solutions to a class of semilinear differential equations, Diff. Int. Equa., to appear. Zbl0818.34013MR1296134
- Lewis J., Smoothness of certain degenerate elliptic equations, Proc. Amer. Math. Soc. 80 (1980), 259-265. (1980) Zbl0455.35064MR0577755
- Li Gongbao, Yan Shusen, Eigenvalue problems for quasilinear elliptic equations in , Comm. PDE 14 (1989), 1291-1314. (1989) MR1017074
- Lindqvist P., On the equation , Proc. Amer. Math. Soc. 109 (1990), 157-164. (1990) Zbl0714.35029MR1007505
- Otani M., Teshima T., On the first eigenvalue of some quasilinear elliptic equations, Proc. Japan Acad. Ser. A 64 (1988), 8-10. (1988) Zbl0662.35080MR0953752
- Serrin J., Local behavior of solutions of quasilinear equations, Acta Math. 111 (1964), 247-302. (1964) MR0170096
- Struwe M., Variational Methods, Springer-Verlag, Berlin, 1990. MR1078018
- Szulkin A., Ljusternik-Schnirelmann theory on -manifolds, Ann. Inst. Henri Poincaré, Anal. Nonl. 5 (1988), 119-139. (1988) MR0954468
- Tolksdorf P., On the Dirichlet problem for quasilinear equations in domains with conical boundary points, Comm. PDE 8 (1983), 773-817. (1983) Zbl0515.35024MR0700735
- Trudinger N., On Harnack type inequalities and their application to quasilinear elliptic equations, Comm. Pure Appl. Math. 20 (1967), 721-747. (1967) Zbl0153.42703MR0226198
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.