Currently displaying 1 – 5 of 5

Showing per page

Order by Relevance | Title | Year of publication

Formes réelles des espaces préhomogènes irréductibles de type parabolique

Hubert Rubenthaler — 1986

Annales de l'institut Fourier

La théorie de M. Sato et T. Shintani associe à toute forme réelle d’un espace préhomogène irréductible régulier dont le groupe est réductif, une fonction zêta qui vérifie une équation fonctionnelle remarquable. Dans cet article, nous classifions les formes réelles infinitésimales des espaces préhomogènes irréductibles de type parabolique. Cette classification est obtenue en termes de diagrammes de Satake à poids.

Decomposition of reductive regular Prehomogeneous Vector Spaces

Hubert Rubenthaler — 2011

Annales de l’institut Fourier

Let ( G , V ) be a regular prehomogeneous vector space (abbreviated to P V ), where G is a reductive algebraic group over . If V = i = 1 n V i is a decomposition of V into irreducible representations, then, in general, the PV’s ( G , V i ) are no longer regular. In this paper we introduce the notion of quasi-irreducible P V (abbreviated to Q -irreducible), and show first that for completely Q -reducible P V ’s, the Q -isotypic components are intrinsically defined, as in ordinary representation theory. We also show that, in an appropriate...

Page 1

Download Results (CSV)