Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

Sur la méthode de résonance et sur un théorème concernant les espaces de type ( B )

I. S. Gal — 1951

Annales de l'institut Fourier

L’objet de la note est l’extension du principe de la borne uniforme pour le cas des suites d’opérations bornées et homogènes, mais non sous-additives. Dans ce but l’auteur introduit la notion de suite asymptotiquement sous-additive : la suite d’opérations u n ( x ) définies dans un espace complet E est asymptotiquement sous-additive, si elle satisfait aux conditions u n ( x + y ) u n ( x ) + O ( | u n | · y ) uniformément pour x , y E et inf y 1 [ u n ( x + y ) + u n ( x ) - u n ( y ) ] O ( | u n | ) pour chaque x E , mais non nécessairement uniformément par rapport...

Sur les moyennes arithmétiques des suites de fonctions orthogonales

I. S. Gal — 1949

Annales de l'institut Fourier

Soit { φ ν ( x ) } une suite orthonormale dans l’intervalle ( - < a x b < ) . L’auteur démontre, que ν = 1 N 1 - ν - 1 N φ ν ( x ) = 0 N 1 2 ( log N ) 1 2 + ϵ pour tout ϵ > 0 et presque partout dans a x b . La démonstration est basée sur un théorème de MM. Gál et Koksma et on peut généraliser aussi pour le cas - x (théorème auxiliaire). En utilisant ce théorème auxiliaire on obtient tout de suite l’estimation connue pour les fonctions de Lebesgue (théorème 2) [voir Kaczmarcz et Steinhaus, Theorie der Orthogonalreihen, Warszawa, 1935, 577].

Page 1

Download Results (CSV)