For 1 ≤ q ≤ α ≤ p ≤ ∞, is a complex Banach space which is continuously included in the Wiener amalgam space and contains the Lebesgue space .
We study the closure in of the space of test functions (infinitely differentiable and with compact support in ) and obtain norm inequalities for Riesz potential operators and Riesz transforms in these spaces. We also introduce the Sobolev type space (a subspace of a Morrey-Sobolev space, but a superspace of the classical Sobolev space ) and obtain...
Let d be a positive integer and μ a generalized Cantor measure satisfying , where , , with 0 < ρ < 1 and R an orthogonal transformation of . Then
⎧1 < p ≤ 2 ⇒
⎨, ,
⎩ p = 2 ⇒ infr≥1 rd(1/α’-1/2) (∫J₀r|μ̂(y)|² dy)1/2 ≥ D₂ρd/α’where , α’ is defined by and the constants D₁ and D₂ depend only on d and p.
Let be a locally compact group and the left Haar measure on . Given a non-negative Radon measure , we establish a necessary condition on the pairs for which is a multiplier from to . Applied to , our result is stronger than the necessary condition established by Oberlin in [14] and is closely related to a class of measures defined by Fofana in [7].
When is the circle...
Download Results (CSV)