The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 12 of 12

Showing per page

Order by Relevance | Title | Year of publication

Approximation of values of hypergeometric functions by restricted rationals

Carsten ElsnerTakao KomatsuIekata Shiokawa — 2007

Journal de Théorie des Nombres de Bordeaux

We compute upper and lower bounds for the approximation of hyperbolic functions at points 1 / s ( s = 1 , 2 , ) by rationals x / y , such that x , y satisfy a quadratic equation. For instance, all positive integers x , y with y 0 ( mod 2 ) solving the Pythagorean equation x 2 + y 2 = z 2 satisfy | y sinh ( 1 / s ) - x | log log y log y . Conversely, for every s = 1 , 2 , there are infinitely many coprime integers x , y , such that | y sinh ( 1 / s ) - x | log log y log y and x 2 + y 2 = z 2 hold simultaneously for some integer z . A generalization to the approximation of h ( e 1 / s ) for rational functions h ( t ) ...

Page 1

Download Results (CSV)