On the equation
We study coprime integer solutions to the equation a³ + b³ⁿ = c² using Galois representations and modular forms. This case represents perhaps the last natural family of generalized Fermat equations descended from spherical cases which is amenable to resolution using the so-called modular method. Our techniques involve an elaborate combination of ingredients, ranging from ℚ-curves and a delicate multi-Frey approach, to appeal to intricate image of inertia arguments.
We derive a relation between induced representations on the group which implies a relation between the jacobians of certain modular curves of level . The motivation for the construction of this relation is the determination of the applicability of Mazur’s method to the modular curve associated to the normalizer of a non-split Cartan subgroup of .
Page 1