The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 20 of 27

Showing per page

Order by Relevance | Title | Year of publication

A concavity property for the measure of product sets in groups

Imre Ruzsa — 1992

Fundamenta Mathematicae

Let G be a connected locally compact group with a left invariant Haar measure μ. We prove that the function ξ(x) = inf μ̅(AB): μ(A) = x is concave for any fixed bounded set B ⊂ G. This is used to give a new proof of Kemperman’s inequality μ ̲ ( A B ) m i n ( μ ̲ ( A ) + μ ̲ ( B ) , μ ( G ) ) for unimodular G.

Arithmetic progressions in sumsets

Imre Z. Ruzsa — 1991

Acta Arithmetica

1. Introduction. Let A,B ⊂ [1,N] be sets of integers, |A|=|B|=cN. Bourgain [2] proved that A+B always contains an arithmetic progression of length e x p ( l o g N ) 1 / 3 - ε . Our aim is to show that this is not very far from the best possible. Theorem 1. Let ε be a positive number. For every prime p > p₀(ε) there is a symmetric set A of residues mod p such that |A| > (1/2-ε)p and A + A contains no arithmetic progression of length (1.1) e x p ( l o g p ) 2 / 3 + ε . A set of residues can be used to get a set of integers in an obvious way. Observe...

Sumsets of Sidon sets

Imre Z. Ruzsa — 1996

Acta Arithmetica

1. Introduction. A Sidon set is a set A of integers with the property that all the sums a+b, a,b∈ A, a≤b are distinct. A Sidon set A⊂ [1,N] can have as many as (1+o(1))√N elements, hence  N/2 sums. The distribution of these sums is far from arbitrary. Erdős, Sárközy and T. Sós [1,2] established several properties of these sumsets. Among other things, in [2] they prove that A + A cannot contain an interval longer than C√N, and give an example that N 1 / 3 is possible. In [1] they show that A + A contains...

Page 1 Next

Download Results (CSV)