The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We prove that for each dense non-compact linear operator S: X → Y between Banach spaces there is a linear operator T: Y → c₀ such that the operator TS: X → c₀ is not compact. This generalizes the Josefson-Nissenzweig Theorem.
Given a subset A of a topological space X, a locally convex space Y, and a family ℂ of subsets of Y we study the problem of the existence of a linear ℂ-extender , which is a linear operator extending bounded continuous functions f: A → C ⊂ Y, C ∈ ℂ, to bounded continuous functions f̅ = u(f): X → C ⊂ Y. Two necessary conditions for the existence of such an extender are found in terms of a topological game, which is a modification of the classical strong Choquet game. The results obtained allow us...
We find conditions for a smooth nonlinear map f: U → V between open subsets of Hilbert or Banach spaces to be locally convex in the sense that for some c and each positive ɛ < c the image f(B ɛ(x)) of each ɛ-ball B ɛ(x) ⊂ U is convex. We give a lower bound on c via the second order Lipschitz constant Lip2(f), the Lipschitz-open constant Lipo(f) of f, and the 2-convexity number conv2(X) of the Banach space X.
A Banach space is called if for any cover of by weakly open sets there is a finite subfamily covering some ball of radius 1 centered at a point with . We prove that an infinite-dimensional separable Banach space is -reflexive (-reflexive for some ) if and only if each -net for has an accumulation point (resp., contains a non-trivial convergent sequence) in the weak topology of . We show that the quasireflexive James space is -reflexive for no . We do not know if each -reflexive...
Download Results (CSV)