In this short paper we introduce the notion of -filter in the class of distributive nearlattices and we prove that the -filters of a normal distributive nearlattice are strongly connected with the filters of the distributive nearlattice of the annihilators.
We prove that there is a one to one correspondence between monadic finite quasi-modal operators on a distributive nearlattice and quantifiers on the distributive lattice of its finitely generated filters, extending the results given in ``Calomino I., Celani S., González L. J.: Quasi-modal operators on distributive nearlattices, Rev. Unión Mat. Argent. 61 (2020), 339--352".
In this paper we shall give a survey of the most important characterizations of the notion of distributivity in semilattices with greatest element and we will present some new ones through annihilators and relative maximal filters. We shall also simplify the topological representation for distributive semilattices given in Celani S.A., Topological representation of distributive semilattices, Sci. Math. Japonicae online 8 (2003), 41–51, and show that the meet-relations are closed under composition....
We introduce some particular classes of filters and order-ideals in distributive semilattices, called -filters and -order-ideals, respectively. In particular, we study -filters and -order-ideals in distributive quasicomplemented semilattices. We also characterize the filters-congruence-cokernels in distributive quasicomplemented semilattices through -order-ideals.
In this note we give some new characterizations of distributivity of a nearlattice and we study annihilator-preserving congruence relations.
Download Results (CSV)