A finite element solution for plasticity with strain-hardening
Three variational principles of linear elastodynamics for two initial conditions, recentrly established by M. R. Gurtin, are extended to nonlinear problems with large elastic deformations.
Generalized variational principles, suggested by Hu Hai-Chang and Washizu or Hellinger and Reissner respectively, are derived on the base of complementary energy respectively. Besides, a short survey of further variational theorems, which follow from the fundamental principles, and the proof of the convergence for a method based on one of them, are presented.
Mixed boundary-value problem of the classical theory of elasticity is considered, where not only displacements and tractions are prescribed on some parts of the boundary, but also conditions of contact and elastic supports for normal and tangential directions to the boundary surface separately. Classical variational principles are derived using functional analysis methods, especially methods of Hilbert space. Furthermore, generalized variational principles and bilateral estimates of errors are...
New types of variational principles, each of them equivalent to the linear mixed problem for parabolic equation with initial and combined boundary conditions having been suggested by physicists, are discussed. Though the approach used here is purely mathematical so that it makes possible application to all mixed problems of mathematical physics with parabolic equations, only the example of heat conductions is used to show the physical interpretation. The principles under consideration are of two...
Par la méthode de transformation en problèmes équivalentes de la théorie d'élasticité, on établit deux théorèmes variationnels analogues aux principes du minimum d'énergie potentielle et de Castigliano dans la théorie d'élasticité, pour les corps homogénes isotropes tenant compte à l'hérédité et de l'âge du matérial.
Using the Haar-Kármán principle, approximate solutions of the basic boundary value problems are proposed and studied, which consist of piecewise linear stress fields on composite triangles. The torsion problem is solved in an analogous manner. Some convergence results are proven.
Page 1 Next