A finite element solution for plasticity with strain-hardening
- Volume: 14, Issue: 4, page 347-368
- ISSN: 0764-583X
Access Full Article
topHow to cite
topHlaváček, Ivan. "A finite element solution for plasticity with strain-hardening." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 14.4 (1980): 347-368. <http://eudml.org/doc/193366>.
@article{Hlaváček1980,
author = {Hlaváček, Ivan},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {three basic boundary value problems; terms of stresses and hardening parameters; piecewise linear simplicial elements; error estimates; regularity of exact solution; not regular solution; convergence},
language = {eng},
number = {4},
pages = {347-368},
publisher = {Dunod},
title = {A finite element solution for plasticity with strain-hardening},
url = {http://eudml.org/doc/193366},
volume = {14},
year = {1980},
}
TY - JOUR
AU - Hlaváček, Ivan
TI - A finite element solution for plasticity with strain-hardening
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1980
PB - Dunod
VL - 14
IS - 4
SP - 347
EP - 368
LA - eng
KW - three basic boundary value problems; terms of stresses and hardening parameters; piecewise linear simplicial elements; error estimates; regularity of exact solution; not regular solution; convergence
UR - http://eudml.org/doc/193366
ER -
References
top- 1. I. BABUSKA, M. PRÁGER and E. VITÁSEK, Numerical Processes in Differential Equations, S.N.T.L., Prague, 1 1966. Zbl0156.16003MR223101
- 2. P. G. CIARLET, The Finite Element Method for Elliptic Problems, North Holland Publ.Comp., Amsterdam, 1978. Zbl0383.65058MR520174
- 3. K. GRÓGER, Initial Value Problems for Elastoplastic and Elasto-Viscoplastic Systems. Nonlinear Analysis, Proc. Spring School, Teubner, Leipzig, 1979, pp. 95-127. Zbl0442.73037MR578911
- 4. B. HALPHEN and NGUYEN QUOC SON, Sur les matériaux Standard généralisés, J.Mécan., Vol. 14, 1975, pp. 39-63. Zbl0308.73017MR416177
- 5. R. HILL, Mathematical Theory of Plasticity, Oxford, 1950. Zbl0041.10802MR37721
- 6. I. LAVÁCEK and J. NECAS, Mathematical Theory of Elastic and Elasto-Plastic Bodies, Elsevier, Amsterdam, 1980. Zbl0448.73009
- 7. I. HLAVÁCEK, Convergence of an Equilibrium Finite Element Model for Plane Elastostatics, Apl. Mat., Vol. 24, 1979, pp. 427-457. Zbl0441.73101MR547046
- 8. C. JOHNSON, On Plasticity with Hardening, J. Math. Anal. Appl., Vol. 62, 1978, pp. 325-336. Zbl0373.73049MR489198
- 9. C. JOHNSON, A Mixed Finite Element Method for Plasticity Problems with Hardening, S.I.A.M. J. Numer. Anal., Vol. 14, 1977, pp. 575-583. Zbl0374.73039MR489265
- 10. C. JOHNSON, On Finite Element Methods for Plasticity Problems, Numer. Math.,Vol. 26, 1976, pp. 79-84. Zbl0355.73035MR436626
- 11. C. JOHNSON and B. MERCIER, Some Equilibrium Finite Element Methods for Two-Dimensional Elasticity Problems, Numer. Math., Vol. 30, 1978, pp. 103-116. Zbl0427.73072MR483904
- 12. M. RRÎZEK, An Equilibrium Finite Element Method in Three-Dimensional Elasticity, Apl. Mat. (to appear). Zbl0488.73072MR640139
- 13. B. MERCIER, A personal communication.
- 14. NGUYEN QUOC SON, Matériaux élastoplastiques écrouissable, Arch. Mech. Stos., Vol. 25, 1973, pp. 695-702. Zbl0332.73039MR366164
- 15. V.B. WATWOOD and B.J. HARTZ , An Equilibrium Stress Field Model for Finite Element Solution of Two-Dimensional Elastostatic Problems, Inter. J. Solids Structures, Vol. 4, 1968, pp. 857-873. Zbl0164.26201
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.