A finite element solution for plasticity with strain-hardening

Ivan Hlaváček

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1980)

  • Volume: 14, Issue: 4, page 347-368
  • ISSN: 0764-583X

How to cite

top

Hlaváček, Ivan. "A finite element solution for plasticity with strain-hardening." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 14.4 (1980): 347-368. <http://eudml.org/doc/193366>.

@article{Hlaváček1980,
author = {Hlaváček, Ivan},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {three basic boundary value problems; terms of stresses and hardening parameters; piecewise linear simplicial elements; error estimates; regularity of exact solution; not regular solution; convergence},
language = {eng},
number = {4},
pages = {347-368},
publisher = {Dunod},
title = {A finite element solution for plasticity with strain-hardening},
url = {http://eudml.org/doc/193366},
volume = {14},
year = {1980},
}

TY - JOUR
AU - Hlaváček, Ivan
TI - A finite element solution for plasticity with strain-hardening
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1980
PB - Dunod
VL - 14
IS - 4
SP - 347
EP - 368
LA - eng
KW - three basic boundary value problems; terms of stresses and hardening parameters; piecewise linear simplicial elements; error estimates; regularity of exact solution; not regular solution; convergence
UR - http://eudml.org/doc/193366
ER -

References

top
  1. 1. I. BABUSKA, M. PRÁGER and E. VITÁSEK, Numerical Processes in Differential Equations, S.N.T.L., Prague, 1 1966. Zbl0156.16003MR223101
  2. 2. P. G. CIARLET, The Finite Element Method for Elliptic Problems, North Holland Publ.Comp., Amsterdam, 1978. Zbl0383.65058MR520174
  3. 3. K. GRÓGER, Initial Value Problems for Elastoplastic and Elasto-Viscoplastic Systems. Nonlinear Analysis, Proc. Spring School, Teubner, Leipzig, 1979, pp. 95-127. Zbl0442.73037MR578911
  4. 4. B. HALPHEN and NGUYEN QUOC SON, Sur les matériaux Standard généralisés, J.Mécan., Vol. 14, 1975, pp. 39-63. Zbl0308.73017MR416177
  5. 5. R. HILL, Mathematical Theory of Plasticity, Oxford, 1950. Zbl0041.10802MR37721
  6. 6. I. LAVÁCEK and J. NECAS, Mathematical Theory of Elastic and Elasto-Plastic Bodies, Elsevier, Amsterdam, 1980. Zbl0448.73009
  7. 7. I. HLAVÁCEK, Convergence of an Equilibrium Finite Element Model for Plane Elastostatics, Apl. Mat., Vol. 24, 1979, pp. 427-457. Zbl0441.73101MR547046
  8. 8. C. JOHNSON, On Plasticity with Hardening, J. Math. Anal. Appl., Vol. 62, 1978, pp. 325-336. Zbl0373.73049MR489198
  9. 9. C. JOHNSON, A Mixed Finite Element Method for Plasticity Problems with Hardening, S.I.A.M. J. Numer. Anal., Vol. 14, 1977, pp. 575-583. Zbl0374.73039MR489265
  10. 10. C. JOHNSON, On Finite Element Methods for Plasticity Problems, Numer. Math.,Vol. 26, 1976, pp. 79-84. Zbl0355.73035MR436626
  11. 11. C. JOHNSON and B. MERCIER, Some Equilibrium Finite Element Methods for Two-Dimensional Elasticity Problems, Numer. Math., Vol. 30, 1978, pp. 103-116. Zbl0427.73072MR483904
  12. 12. M. RRÎZEK, An Equilibrium Finite Element Method in Three-Dimensional Elasticity, Apl. Mat. (to appear). Zbl0488.73072MR640139
  13. 13. B. MERCIER, A personal communication. 
  14. 14. NGUYEN QUOC SON, Matériaux élastoplastiques écrouissable, Arch. Mech. Stos., Vol. 25, 1973, pp. 695-702. Zbl0332.73039MR366164
  15. 15. V.B. WATWOOD and B.J. HARTZ , An Equilibrium Stress Field Model for Finite Element Solution of Two-Dimensional Elastostatic Problems, Inter. J. Solids Structures, Vol. 4, 1968, pp. 857-873. Zbl0164.26201

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.