The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 20 of 31

Showing per page

Order by Relevance | Title | Year of publication

Optimal design of cylindrical shell with a rigid obstacle

Ján Lovíšek — 1989

Aplikace matematiky

The aim of the present paper is to study problems of optimal design in mechanics, whose variational form are inequalities expressing the principle of virtual power in its inequality form. We consider an optimal control problem in whixh the state of the system (involving an elliptic, linear symmetric operator, the coefficients of which are chosen as the design - control variables) is defined as the (unique) solution of stationary variational inequalities. The existence result proved in Section 1...

Optimal control of variational inequality with applications to axisymmetric shells

Ján Lovíšek — 1987

Aplikace matematiky

The optimal control problem of variational inequality with applications to axisymmetric shells is discussed. First an existence result for the solution of the optimal control problem is given. Next is presented the formulation of first order necessary conditionas of optimality for the control problem governed by a variational inequality with its coefficients as control variables.

Optimal design of laminated plate with obstacle

Ján Lovíšek — 1992

Applications of Mathematics

The aim of the present paper is to study problems of optimal design in mechanics, whose variational form is given by inequalities expressing the principle of virtual power in its inequality form. The elliptic, linear symmetric operators as well as convex sets of possible states depend on the control parameter. The existence theorem for the optimal control is applied to design problems for an elastic laminated plate whose variable thickness appears as a control variable.

Modelling and control in pseudoplate problem with discontinuous thickness

Ján Lovíšek — 2009

Applications of Mathematics

This paper concerns an obstacle control problem for an elastic (homogeneous) and isotropic) pseudoplate. The state problem is modelled by a coercive variational inequality, where control variable enters the coefficients of the linear operator. Here, the role of control variable is played by the thickness of the pseudoplate which need not belong to the set of continuous functions. Since in general problems of control in coefficients have no optimal solution, a class of the extended optimal control...

Singular perturbations in optimal control problem with application to nonlinear structural analysis

Ján Lovíšek — 1996

Applications of Mathematics

This paper concerns an optimal control problem of elliptic singular perturbations in variational inequalities (with controls appearing in coefficients, right hand sides and convex sets of states as well). The existence of an optimal control is verified. Applications to the optimal control of an elasto-plastic plate with a small rigidity and with an obstacle are presented. For elasto-plastic plates with a moving part of the boundary a primal finite element model is applied and a convergence result...

Reliable solution of parabolic obstacle problems with respect to uncertain data

Ján Lovíšek — 2003

Applications of Mathematics

A class of parabolic initial-boundary value problems is considered, where admissible coefficients are given in certain intervals. We are looking for maximal values of the solution with respect to the set of admissible coefficients. We give the abstract general scheme, proposing how to solve such problems with uncertain data. We formulate a general maximization problem and prove its solvability, provided all fundamental assumptions are fulfilled. We apply the theory to certain Fourier obstacle type...

Control in obstacle-pseudoplate problems with friction on the boundary. optimal design and problems with uncertain data

Ivan HlaváčekJán Lovíšek — 2001

Applicationes Mathematicae

Four optimal design problems and a weight minimization problem are considered for elastic plates with small bending rigidity, resting on a unilateral elastic foundation, with inner rigid obstacles and a friction condition on a part of the boundary. The state problem is represented by a variational inequality and the design variables influence both the coefficients and the set of admissible state functions. If some input data are allowed to be uncertain a new method of reliable solutions is employed....

Control in obstacle-pseudoplate problems with friction on the boundary. approximate optimal design and worst scenario problems

Ivan HlaváčekJán Lovíšek — 2002

Applicationes Mathematicae

In addition to the optimal design and worst scenario problems formulated in a previous paper [3], approximate optimization problems are introduced, making use of the finite element method. The solvability of the approximate problems is proved on the basis of a general theorem of [3]. When the mesh size tends to zero, a subsequence of any sequence of approximate solutions converges uniformly to a solution of the continuous problem.

On the minimum of the work of interaction forces between a pseudoplate and a rigid obstacle

Igor BockJán Lovíšek — 2001

Mathematica Bohemica

An optimization problem for the unilateral contact between a pseudoplate and a rigid obstacle is considered. The variable thickness of the pseudoplate plays the role of a control variable. The cost functional is a regular functional only in the smooth case. The existence of an optimal thickness is verified. The penalized optimal control problem is considered in the general case.

An optimal control problem for a pseudoparabolic variational inequality

Igor BockJán Lovíšek — 1992

Applications of Mathematics

We deal with an optimal control problem governed by a pseudoparabolic variational inequality with controls in coefficients and in convex sets of admissible states. The existence theorem for an optimal control parameter will be proved. We apply the theory to the original design problem for a deffection of a viscoelastic plate with an obstacle, where the variable thickness of the plate appears as a control variable.

Page 1 Next

Download Results (CSV)