The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The infimum of elements a and b of a Hilbert algebra are said to be the compatible meet of a and b, if the elements a and b are compatible in a certain strict sense. The subject of the paper will be Hilbert algebras equipped with the compatible meet operation, which normally is partial. A partial lower semilattice is shown to be a reduct of such an expanded Hilbert algebra i ?both algebras have the same ?lters.An expanded Hilbert algebra is actually an implicative partial semilattice (i.e., a relative...
We characterise those Hilbert algebras that are relatively pseudocomplemented posets.
We study a particular way of introducing pseudocomplementation in ordered semigroups with zero, and characterise the class of those pseudocomplemented semigroups, termed g-semigroups here, that admit a Glivenko type theorem (the pseudocomplements form a Boolean algebra). Some further results are obtained for g-semirings - those sum-ordered partially additive semirings whose multiplicative part is a g-semigroup. In particular, we introduce the notion of a partial Stone semiring and show that several...
In recent papers, S. N. Begum and A. S. A. Noor have studied join partial semilattices (JP-semilattices) defined as meet semilattices with an additional partial operation (join) satisfying certain axioms. We show why their axiom system is too weak to be a satisfactory basis for the authors' constructions and proofs, and suggest an additional axiom for these algebras. We also briefly compare axioms of JP-semilattices with those of nearlattices, another kind of meet semilattices with a partial join...
Let be a Hilbert algebra. The monoid of all unary operations on generated by operations , which is actually an upper semilattice w.r.t. the pointwise ordering, is called the adjoint semilattice of . This semilattice is isomorphic to the semilattice of finitely generated filters of , it is subtractive (i.e., dually implicative), and its ideal lattice is isomorphic to the filter lattice of . Moreover, the order dual of the adjoint semilattice is a minimal Brouwerian extension of , and the...
Download Results (CSV)