The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 5 of 5

Showing per page

Order by Relevance | Title | Year of publication

A direct proof of the Caffarelli-Kohn-Nirenberg theorem

Jörg Wolf — 2008

Banach Center Publications

In the present paper we give a new proof of the Caffarelli-Kohn-Nirenberg theorem based on a direct approach. Given a pair (u,p) of suitable weak solutions to the Navier-Stokes equations in ℝ³ × ]0,∞[ the velocity field u satisfies the following property of partial regularity: The velocity u is Lipschitz continuous in a neighbourhood of a point (x₀,t₀) ∈ Ω × ]0,∞ [ if l i m s u p R 0 1 / R Q R ( x , t ) | c u r l u × u / | u | | ² d x d t ε * for a sufficiently small ε * > 0 .

Interior regularity of weak solutions to the equations of a stationary motion of a non-Newtonian fluid with shear-dependent viscosity. The case q = 3 d d + 2

Jörg Wolf — 2007

Commentationes Mathematicae Universitatis Carolinae

In this paper we consider weak solutions 𝐮 : Ω d to the equations of stationary motion of a fluid with shear dependent viscosity in a bounded domain Ω d ( d = 2 or d = 3 ). For the critical case q = 3 d d + 2 we prove the higher integrability of 𝐮 which forms the basis for applying the method of differences in order to get fractional differentiability of 𝐮 . From this we show the existence of second order weak derivatives of u .

On the linear problem arising from motion of a fluid around a moving rigid body

Šárka Matušů-NečasováJörg Wolf — 2015

Mathematica Bohemica

We study a linear system of equations arising from fluid motion around a moving rigid body, where rotation is included. Originally, the coordinate system is attached to the fluid, which means that the domain is changing with respect to time. To get a problem in the fixed domain, the problem is rewritten in the coordinate system attached to the body. The aim of the present paper is the proof of the existence of a strong solution in a weighted Lebesgue space. In particular, we prove the existence...

On the Hölder continuity of weak solutions to nonlinear parabolic systems in two space dimensions

Joachim NaumannJörg WolfMichael Wolff — 1998

Commentationes Mathematicae Universitatis Carolinae

We prove the interior Hölder continuity of weak solutions to parabolic systems u j t - D α a j α ( x , t , u , u ) = 0 in Q ( j = 1 , ... , N ) ( Q = Ω × ( 0 , T ) , Ω 2 ), where the coefficients a j α ( x , t , u , ξ ) are measurable in x , Hölder continuous in t and Lipschitz continuous in u and ξ .

Page 1

Download Results (CSV)