In the present work we prove the interior Hölder continuity of the gradient matrix of any weak solution of equations, which describes the motion of non-Newtonian fluid in two dimensions, restricting ourself to the shear thinning case .
In the present paper we give a new proof of the Caffarelli-Kohn-Nirenberg theorem based on a direct approach. Given a pair (u,p) of suitable weak solutions to the Navier-Stokes equations in ℝ³ × ]0,∞[ the velocity field u satisfies the following property of partial regularity: The velocity u is Lipschitz continuous in a neighbourhood of a point (x₀,t₀) ∈ Ω × ]0,∞ [ if
for a sufficiently small .
In this paper we consider weak solutions to the equations of stationary motion of a fluid with shear dependent viscosity in a bounded domain ( or ). For the critical case we prove the higher integrability of which forms the basis for applying the method of differences in order to get fractional differentiability of . From this we show the existence of second order weak derivatives of .
We prove the interior Hölder continuity of weak solutions to parabolic systems
(), where the coefficients are measurable in , Hölder continuous in and Lipschitz continuous in and .
We study a linear system of equations arising from fluid motion around a moving rigid body, where rotation is included. Originally, the coordinate system is attached to the fluid, which means that the domain is changing with respect to time. To get a problem in the fixed domain, the problem is rewritten in the coordinate system attached to the body. The aim of the present paper is the proof of the existence of a strong solution in a weighted Lebesgue space. In particular, we prove the existence...
Download Results (CSV)