Currently displaying 1 – 7 of 7

Showing per page

Order by Relevance | Title | Year of publication

Strong shape theory

J. DydakJ. Segal — 1981

CONTENTS1. Introduction..................................................................................................................................... 52. Terminology and notation.................................................................................................................... 63. Proper maps on contractible telescopes.......................................................................................... 84. The strong shape category.....................................................................................................................

Coarse dimensions and partitions of unity.

N. BrodskiyJ. Dydak — 2008

RACSAM

Gromov and Dranishnikov introduced asymptotic and coarse dimensions of proper metric spaces via quite different ways. We define coarse and asymptotic dimension of all metric spaces in a unified manner and we investigate relationships between them generalizing results of Dranishnikov and Dranishnikov-Keesling-Uspienskij.

Coarse structures and group actions

N. BrodskiyJ. DydakA. Mitra — 2008

Colloquium Mathematicae

The main results of the paper are: Proposition 0.1. A group G acting coarsely on a coarse space (X,𝓒) induces a coarse equivalence g ↦ g·x₀ from G to X for any x₀ ∈ X. Theorem 0.2. Two coarse structures 𝓒₁ and 𝓒₂ on the same set X are equivalent if the following conditions are satisfied: (1) Bounded sets in 𝓒₁ are identical with bounded sets in 𝓒₂. (2) There is a coarse action ϕ₁ of a group G₁ on (X,𝓒₁) and a coarse action ϕ₂ of a...

Algebraic properties of quasi-finite complexes

M. CenceljJ. DydakJ. SmrekarA. VavpetičŽ. Virk — 2007

Fundamenta Mathematicae

A countable CW complex K is quasi-finite (as defined by A. Karasev) if for every finite subcomplex M of K there is a finite subcomplex e(M) such that any map f: A → M, where A is closed in a separable metric space X satisfying XτK, has an extension g: X → e(M). Levin's results imply that none of the Eilenberg-MacLane spaces K(G,2) is quasi-finite if G ≠ 0. In this paper we discuss quasi-finiteness of all Eilenberg-MacLane spaces. More generally, we deal with CW complexes with finitely many...

Covering maps for locally path-connected spaces

N. BrodskiyJ. DydakB. LabuzA. Mitra — 2012

Fundamenta Mathematicae

We define Peano covering maps and prove basic properties analogous to classical covers. Their domain is always locally path-connected but the range may be an arbitrary topological space. One of characterizations of Peano covering maps is via the uniqueness of homotopy lifting property for all locally path-connected spaces. Regular Peano covering maps over path-connected spaces are shown to be identical with generalized regular covering maps introduced by Fischer and Zastrow....

Hurewicz-Serre theorem in extension theory

M. CenceljJ. DydakA. MitraA. Vavpetič — 2008

Fundamenta Mathematicae

The paper is devoted to generalizations of the Cencelj-Dranishnikov theorems relating extension properties of nilpotent CW complexes to their homology groups. Here are the main results of the paper: Theorem 0.1. Let L be a nilpotent CW complex and F the homotopy fiber of the inclusion i of L into its infinite symmetric product SP(L). If X is a metrizable space such that X τ K ( H k ( L ) , k ) for all k ≥ 1, then X τ K ( π k ( F ) , k ) and X τ K ( π k ( L ) , k ) for all k ≥ . Theorem 0.2. Let X be a metrizable space such that dim(X) < ∞ or X ∈ ANR. Suppose...

Page 1

Download Results (CSV)