Sur certains produits liés aux sommes des chiffres
La complexité d’une suite infinie est définie comme la fonction qui compte le nombre de facteurs de longueur dans cette suite. Nous prouvons ici que la complexité des suites de Rudin-Shapiro généralisées (qui comptent les occurrences de certains facteurs dans les développements binaires d’entiers) est ultimement affine.
Every real number , has an essentially unique expansion as a Pierce series : where the form a strictly increasing sequence of positive integers. The expansion terminates if and only if is rational. Similarly, every positive real number has a unique expansion as an Engel series : where the form a (not necessarily strictly) increasing sequence of positive integers. If the expansion is infinite, we require that the sequence yi be not eventually...
Let be a real number with continued fraction expansion and let be a matrix with integer entries and nonzero determinant. If has bounded partial quotients, then also has bounded partial quotients. More precisely, if for all sufficiently large , then for all sufficiently large . We also give a weaker bound valid for all with . The proofs use the homogeneous Diophantine approximation constant . We show that
Page 1