The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
This paper considers control affine systems in with two inputs, and gives necessary and sufficient conditions for dynamic feedback linearization of these systems with the restriction that the "linearizing outputs" must be some functions of the original state and inputs only. This also gives conditions for non-affine systems in .
We define, in an infinite-dimensional differential geometric framework, the 'infinitesimal Brunovský form' which we previously introduced in another framework and link it with equivalence via diffeomorphism to a linear system, which is the same as linearizability by 'endogenous dynamic feedback'.
Download Results (CSV)