We prove the existence of an unbounded connected branch of nontrivial homoclinic trajectories of a family of discrete nonautonomous asymptotically hyperbolic systems parametrized by a circle under assumptions involving topological properties of the asymptotic stable bundles.
Given a one-parameter family of semi Riemannian metrics on an
-dimensional manifold , a family of time-dependent potentials and a family of trajectories connecting two points of the mechanical system defined by , we show that there are trajectories bifurcating from the trivial branch if the generalized Morse indices and are different. If the data are analytic we obtain estimates for the number of bifurcation points on the branch and, in particular, for the number of strictly conjugate...
Download Results (CSV)