Remarques sur les variétés conformément plates.
A compact manifold is called if it carries a flat Riemannian metric. Bieberbach manifolds are aspherical, therefore the supremum of their systolic ratio, over the set of Riemannian metrics, is finite by a fundamental result of M. Gromov. We study the optimal systolic ratio of compact -dimensional orientable Bieberbach manifolds which are not tori, and prove that it cannot be realized by a flat metric. We also highlight a metric that we construct on one type of such manifolds () which has interesting...
Page 1