The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 6 of 6

Showing per page

Order by Relevance | Title | Year of publication

Existence and decay in non linear viscoelasticity

Jaime E. Muñoz RiveraFélix P. Quispe Gómez — 2003

Bollettino dell'Unione Matematica Italiana

In this work we study the existence, uniqueness and decay of solutions to a class of viscoelastic equations in a separable Hilbert space H given by u t t + M ( [ u ] ) A u - 0 t g ( t - τ ) N ( [ u ] ) A u d τ = 0 , in L 2 ( 0 , T ; H ) u ( 0 ) = u 0 , u t ( 0 ) = u 1 where by u t we are denoting [ u ( t ) ] = ( u ( t ) , u t ( t ) , ( A u ( t ) , u t ( t ) ) , A 1 2 u ( t ) 2 , A 1 2 u t ( t ) 2 , A u ( t ) 2 5 A : D A H H is a nonnegative, self-adjoint operator, M , N : R 5 R are C 2 - functions and g : R R is a C 3 -function with appropriates conditions. We show that there exists global solution in time for small initial data. When u t = A 1 2 u 2 and N = 1 , we show the global existence for large initial data u 0 , u 1 taken in the space D A D A 1 / 2 provided they are close enough...

Exponential decay to partially thermoelastic materials

Jaime E. Muñoz RiveraVanilde BisogninEleni Bisognin — 2002

Bollettino dell'Unione Matematica Italiana

We study the thermoelastic system for material which are partially thermoelastic. That is, a material divided into two parts, one of them a good conductor of heat, so there exists a thermoelastic phenomenon. The other is a bad conductor of heat so there is not heat flux. We prove for such models that the solution decays exponentially as time goes to infinity. We also consider a nonlinear case.

Page 1

Download Results (CSV)