The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 13 of 13

Showing per page

Order by Relevance | Title | Year of publication

Pointwise limit theorem for a class of unbounded operators in r -spaces

Ryszard Jajte — 2007

Studia Mathematica

We distinguish a class of unbounded operators in r , r ≥ 1, related to the self-adjoint operators in ². For these operators we prove a kind of individual ergodic theorem, replacing the classical Cesàro averages by Borel summability. The result is equivalent to a version of Gaposhkin’s criterion for the a.e. convergence of operators. In the proof, the theory of martingales and interpolation in r -spaces are applied.

Convergence of orthogonal series of projections in Banach spaces

Ryszard JajteAdam Paszkiewicz — 1997

Annales Polonici Mathematici

For a sequence ( A j ) of mutually orthogonal projections in a Banach space, we discuss all possible limits of the sums S n = j = 1 n A j in a “strong” sense. Those limits turn out to be some special idempotent operators (unbounded, in general). In the case of X = L₂(Ω,μ), an arbitrary unbounded closed and densely defined operator A in X may be the μ-almost sure limit of S n (i.e. S n f A f μ-a.e. for all f ∈ (A)).

Page 1

Download Results (CSV)