Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

Spectral discretization of Darcy equations coupled with Navier-Stokes equations by vorticity-velocity-pressure formulation

Yassine MabroukiJamil Satouri — 2022

Applications of Mathematics

We consider a model coupling the Darcy equations in a porous medium with the Navier-Stokes equations in the cracks, for which the coupling is provided by the pressure's continuity on the interface. We discretize the coupled problem by the spectral element method combined with a nonoverlapping domain decomposition method. We prove the existence of solution for the discrete problem and establish an error estimation. We conclude with some numerical tests confirming the results of our analysis.

Mortar spectral method in axisymmetric domains

Saloua Mani AouadiJamil Satouri — 2013

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We consider the Laplace equation posed in a three-dimensional axisymmetric domain. We reduce the original problem by a Fourier expansion in the angular variable to a countable family of two-dimensional problems. We decompose the meridian domain, assumed polygonal, in a finite number of rectangles and we discretize by a spectral method. Then we describe the main features of the mortar method and use the algorithm Strang Fix to improve the accuracy of our discretization.

Mortar spectral method in axisymmetric domains

Saloua Mani AouadiJamil Satouri — 2012

ESAIM: Mathematical Modelling and Numerical Analysis

We consider the Laplace equation posed in a three-dimensional axisymmetric domain. We reduce the original problem by a Fourier expansion in the angular variable to a countable family of two-dimensional problems. We decompose the meridian domain, assumed polygonal, in a finite number of rectangles and we discretize by a spectral method. Then we describe the main features of the mortar method and use the algorithm Strang Fix to improve the accuracy...

Page 1

Download Results (CSV)