The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 5 of 5

Showing per page

Order by Relevance | Title | Year of publication

Around Widder’s characterization of the Laplace transform of an element of L ( + )

Jan Kisyński — 2000

Annales Polonici Mathematici

Let ϰ be a positive, continuous, submultiplicative function on + such that l i m t e - ω t t - α ϰ ( t ) = a for some ω ∈ ℝ, α ∈ + ¯ and a + . For every λ ∈ (ω,∞) let ϕ λ ( t ) = e - λ t for t + . Let L ϰ 1 ( + ) be the space of functions Lebesgue integrable on + with weight ϰ , and let E be a Banach space. Consider the map ϕ : ( ω , ) λ ϕ λ L ϰ 1 ( + ) . Theorem 5.1 of the present paper characterizes the range of the linear map T T ϕ defined on L ( L ϰ 1 ( + ) ; E ) , generalizing a result established by B. Hennig and F. Neubrander for ϰ ( t ) = e ω t . If ϰ ≡ 1 and E =ℝ then Theorem 5.1 reduces to D. V. Widder’s characterization...

Page 1

Download Results (CSV)