On Cohen's proof of the Factorization Theorem

Jan Kisyński

Annales Polonici Mathematici (2000)

  • Volume: 75, Issue: 2, page 177-192
  • ISSN: 0066-2216


Various proofs of the Factorization Theorem for representations of Banach algebras are compared with its original proof due to P. Cohen.

How to cite


Kisyński, Jan. "On Cohen's proof of the Factorization Theorem." Annales Polonici Mathematici 75.2 (2000): 177-192. <http://eudml.org/doc/208393>.

abstract = {Various proofs of the Factorization Theorem for representations of Banach algebras are compared with its original proof due to P. Cohen.},
author = {Kisyński, Jan},
journal = {Annales Polonici Mathematici},
keywords = {factorization for a representation of a Banach algebra with a bounded approximate identity; factorization theorem; representation},
language = {eng},
number = {2},
pages = {177-192},
title = {On Cohen's proof of the Factorization Theorem},
url = {http://eudml.org/doc/208393},
volume = {75},
year = {2000},

AU - Kisyński, Jan
TI - On Cohen's proof of the Factorization Theorem
JO - Annales Polonici Mathematici
PY - 2000
VL - 75
IS - 2
SP - 177
EP - 192
AB - Various proofs of the Factorization Theorem for representations of Banach algebras are compared with its original proof due to P. Cohen.
LA - eng
KW - factorization for a representation of a Banach algebra with a bounded approximate identity; factorization theorem; representation
UR - http://eudml.org/doc/208393
ER -


  1. [A-S] G. R. Allan and A. M. Sinclair, Power factorization in Banach algebras with a bounded approximate identity, Studia Math. 56 (1976), 31-38. Zbl0338.46044
  2. [A;1] M. Altman, Factorisation dans les algèbres de Banach, C. R. Acad. Sci. Paris Sér. A 272 (1971), 1388-1389. Zbl0232.46045
  3. [A;2] M. Altman, Infinite products and factorization in Banach algebras, Boll. Un. Mat. Ital. 5 (1972), 217-229. Zbl0252.46043
  4. [A;3] M. Altman, Contracteurs dans les algèbres de Banach, C. R. Acad. Sci. Paris Sér. A 274 (1972), 399-400. Zbl0232.46044
  5. [A;4] M. Altman, Contractors, approximate identities and factorization in Banach algebras, Pacific J. Math. 48 (1973), 323-334. Zbl0281.46044
  6. [A;5] M. Altman, A generalization and the converse of Cohen's factorization theorem, Duke Math. J. 42 (1975), 105-110. 
  7. [AP] E. Ansari-Piri, A class of factorable topological algebras, Proc. Edinburgh Math. Soc. 33 (1990), 53-59. Zbl0699.46027
  8. [B-D] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer, 1979. 
  9. [C] P. Cohen, Factorization in group algebras, Duke Math. J. 26 (1959), 199-205. Zbl0085.10201
  10. [C-S] H. S. Collins and W. H. Summers, Some applications of Hewitt's factorization theorem, Proc. Amer. Math. Soc. 21 (1969), 727-733. Zbl0174.18501
  11. [Cr] I. G. Craw, Factorization in Fréchet algebras, J. London Math. Soc. 44 (1969), 607-611. Zbl0175.14204
  12. [C-FT] P. C. Curtis, Jr. and A. Figà-Talamanca, Factorization theorems for Banach algebras, in: Function Algebras, F. T. Birtel (ed.), Scott, Foresman and Co., Chicago, IL, 1966, 169-185. 
  13. [C-St] P. C. Curtis, Jr. and H. Stetkaer, A factorization theorem for anatytic functions operating in a Banach algebra, Pacific J. Math. 37 (1971), 337-343. Zbl0203.44702
  14. [D-M] J. Dixmier et P. Malliavin, Factorisations de fonctions et de vecteurs indéfiniment différentiables, Bull. Sci. Math. (2) 102 (1978), 305-330. Zbl0392.43013
  15. [D] P. G. Dixon, Automatic continuity of positive functionals on topological involution algebras, Bull. Austral. Math. Soc. 23 (1981), 265-281. Zbl0453.46046
  16. [D-W] R. S. Doran and J. Wichmann, Approximate Identities and Factorization in Banach Modules, Lecture Notes in Math. 768, Springer, 1979. Zbl0418.46039
  17. [E;I] R. E. Edwards, Fourier Series, a Modern Introduction, Vol. I, 2nd ed., Springer, 1979. Zbl0424.42001
  18. [E;II] R. E. Edwards, Fourier Series, a Modern Introduction, Vol. II, 2nd ed., Springer, 1982. 
  19. [Es;1] J. Esterle, Injection de semi-groupes divisibles dans des algèbres de convolution et construction d'homomorphismes discontinus de C(K), Proc. London Math. Soc. (3) 36 (1978), 59-85. Zbl0411.46039
  20. [Es;2] J. Esterle, A complex-variable proof of the Wiener tauberian theorem, Ann. Inst. Fourier (Grenoble) 30 (1980), no. 2, 91-96. Zbl0419.40005
  21. [Es;3] J. Esterle, Elements for a classification of commutative radical Banach algebras, in: Proc. Conf. on Radical Banach Algebras and Automatic Continuity (Long Beach, 1981), J. M. Bachar et al. (eds.), Lecture Notes in Math. 975, Springer, Berlin, 1983, 4-65. 
  22. [Es;4] J. Esterle, Mittag-Leffler method in the theory of Banach algebras and a new approach to Michael's problem, in: Banach Algebras and Several Complex Variables, F. Greenleaf and D. Gulick (eds.), Contemp. Math. 32, Amer. Math. Soc., 1984, 107-129. 
  23. [F-L] H. G. Feichtinger and M. Leinert, Individual factorization in Banach modules, Colloq. Math. 51 (1987), 107-117. Zbl0628.46051
  24. [G-R] J. E. Galé and T. J. Ransford, On the growth of analytic semigroups along vertical lines, Studia Math. 138 (2000), 165-177. Zbl0959.47024
  25. [G-W] J. E. Galé and M. C. White, An analytic semigroup version of the Beurling-Helson theorem, Math. Z. 225 (1997), 151-165. Zbl0874.46031
  26. [G] N. Grønbæk, Power factorization in Banach modules over commutative radical Banach algebras, Math. Scand. 50 (1982), 123-134. Zbl0501.46042
  27. [G-L-R] S. L. Gulick, T. S. Liu and A. C. M. van Rooij, Group algebra modules. II, Canad. J. Math. 19 (1967), 151-173. Zbl0148.12004
  28. [H] E. Hewitt, The ranges of certain convolution operators, Math. Scand. 15 (1964), 147-155. Zbl0135.36002
  29. [H-R;II] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Volume II, Structure and Analysis on Compact Groups, Analysis on Locally Compact Abelian Groups, 3rd printing, Springer, 1997. 
  30. [J] B. E. Johnson, Continuity of centralizers on Banach algebras, J. London Math. Soc. 41 (1966), 639-640. Zbl0143.36103
  31. [K] P. Koosis, Sur un théorème de Paul Cohen, C. R. Acad. Sci. Paris 259 (1964), 1380-1382. 
  32. [K-V] J. Křížková and P. Vrbová, A remark on a factorization theorem, Comment. Math. Univ. Carolin. 15 (1974), 611-614. Zbl0329.46055
  33. [L] M. Leinert, A commutative Banach algebra which factorizes but has no approximate units, Proc. Amer. Math. Soc. 55 (1976), 345-346. Zbl0325.46057
  34. [Ou] S. I. Ouzomgi, Factorization and automatic continuity for an algebra of infinitely differentiable functions, J. London Math. Soc. (2) 30 (1984), 265-280. Zbl0584.46037
  35. [O] J.-L. Ovaert, Factorisation dans les algèbres et modules de convolution, C. R. Acad. Sci. Paris Sér. A 265 (1967), 534-535. Zbl0175.14203
  36. [Pal] T. W. Palmer, Banach Algebras and the General Theory of *-Algebras, Volume I, Algebras and Banach Algebras, Encyclopedia Math. Appl. 49, Cambridge Univ. Press, 1994. 
  37. [Pas] W. L. Paschke, A factorable Banach algebra without bounded approximate unit, Pacific J. Math. 46 (1973), 249-251. Zbl0257.46050
  38. [P-V] H. Petzeltová and P. Vrbová, Factorization in the algebra of rapidly decreasing functions on R n , Comment. Math. Univ. Carolin. 19 (1978), 489-499. Zbl0382.46014
  39. [P-P] F. A. Potra and V. Pták, Nondiscrete Induction and Iterative Processes, Res. Notes in Math. 103, Pitman, 1984. 
  40. [P;1] V. Pták, Un théorème de factorisation, C. R. Acad. Sci. Paris Sér. A 275 (1972), 1297-1299. Zbl0252.46044
  41. [P;2] V. Pták, Deux théorèmes de factorisation, ibid. 278 (1974), 1091-1094. Zbl0277.46047
  42. [P;3] V. Pták, Factorization in Banach algebras, Studia Math. 65 (1979), 279-285. Zbl0342.46036
  43. [Ri] M. Rieffel, On the continuity of certain intertwining operators, centralizers, and positive linear functionals, Proc. Amer. Math. Soc. 20 (1969), 455-457. Zbl0177.41301
  44. [R;1] W. Rudin, Factorization in the group algebra of the real line, Proc. Nat. Acad. Sci. U.S.A. 43 (1957), 339-340. Zbl0079.13301
  45. [R;2] W. Rudin, Representation of functions by convolutions, J. Math. Mech. 7 (1958), 103-115. Zbl0079.13302
  46. [S] R. Salem, Sur les transformations des séries de Fourier, Fund. Math. 33 (1939), 108-114. Zbl65.1203.01
  47. [S-T] F. D. Sentilles and D. C. Taylor, Factorization in Banach algebras and the general strict topology, Trans. Amer. Math. Soc. 142 (1969), 141-152. Zbl0185.21103
  48. [S;1] A. M. Sinclair, Bounded approximate identities, factorization, and a convolution algebra, J. Funct. Anal. 29 (1978), 308-318. Zbl0385.46030
  49. [S;2] A. M. Sinclair, Cohen's factorization method using an algebra of analytic functions, Proc. London Math. Soc. 39 (1979), 451-468. Zbl0425.46036
  50. [S;3] A. M. Sinclair, Cohen elements in Banach algebras, Proc. Roy. Soc. Edinburgh Sect. A 84 (1979), 55-70. Zbl0425.46038
  51. [S;4] A. M. Sinclair, Continuous Semigroups in Banach Algebras, London Math. Soc. Lecture Note Ser. 63, Cambridge Univ. Press, 1982. Zbl0493.46042
  52. [M.K.S] M. K. Summers, Factorization in Fréchet modules, J. London Math. Soc. (2) 5 (1972), 243-248. Zbl0239.46043
  53. [W.H.S] W. H. Summers, Factorization in Fréchet spaces, Studia Math. 39 (1971), 209-216. Zbl0214.13703
  54. [T] D. C. Taylor, A characterization of Banach algebras with approximate unit, Bull. Amer. Math. Soc. 74 (1968), 761-766. Zbl0164.44601
  55. [V] N. T. Varopoulos, Sur les formes positives d'une algèbre de Banach, C. R. Acad. Sci. Paris Sér. A 258 (1964), 2465-2467. Zbl0131.33103
  56. [Vo;1] J. Voigt, Factorization in some Fréchet algebras of differentiable functions, Studia Math. 78 (1984), 333-347. Zbl0491.46034
  57. [Vo;2] J. Voigt, Factorization in Fréchet algebras, J. London Math. Soc. (2) 29 (1984), 147-152. Zbl0569.46028
  58. [W] M. C. White, Strong Wedderburn decompositions of Banach algebras containing analytic semigroups, J. London Math. Soc. (2) 49 (1994), 331-342. Zbl0833.46047
  59. [Z;I] A. Zygmund, Trigonometric Series, Vol. I, 2nd ed., Cambridge Univ. Press, 1959. Zbl0085.05601
  60. [Ż] W. Żelazko, Banach Algebras, Elsevier, Amsterdam, and PWN-Polish Sci. Publ., Warszawa, 1973. 

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.