-Ramsey classes and dimensions of graphs
In this note, we introduce the notion of -Ramsey classes of graphs and we reveal connections to intersection dimensions of graphs.
In this note, we introduce the notion of -Ramsey classes of graphs and we reveal connections to intersection dimensions of graphs.
We prove that for any additive hereditary property P > O, it is NP-hard to decide if a given graph G allows a vertex partition V(G) = A∪B such that G[A] ∈ 𝓞 (i.e., A is independent) and G[B] ∈ P.
Given graphs G and H, a mapping f:V(G) → V(H) is a homomorphism if (f(u),f(v)) is an edge of H for every edge (u,v) of G. In this paper, we initiate the study of computational complexity of locally injective homomorphisms called partial covers of graphs. We motivate the study of partial covers by showing a correspondence to generalized (2,1)-colorings of graphs, the notion stemming from a practical problem of assigning frequencies to transmitters without interference. We compare the problems of...
The interaction between dislocation dipolar loops plays an important role in the computation of the dislocation dynamics. The analytical form of the interaction force between two loops derived in the present paper from Kroupa’s formula of the stress field generated by a single dipolar loop allows for faster computation.
For a simple graph H, →H denotes the class of all graphs that admit homomorphisms to H (such classes of graphs are called hom-properties). We investigate hom-properties from the point of view of the lattice of hereditary properties. In particular, we are interested in characterization of maximal graphs belonging to →H. We also provide a description of graphs maximal with respect to reducible hom-properties and determine the maximum number of edges of graphs belonging to →H.
Page 1