We classify the irreducible components of varieties of modules over tubular algebras. Our results are stated in terms of root combinatorics. They can be applied to understand the varieties of modules over the preprojective algebras of Dynkin type 𝔸₅ and 𝔻₄.
Let be a preprojective algebra of type , and let be the corresponding semisimple simply connected complex algebraic group. We study rigid modules in subcategories for an injective -module, and we introduce a mutation operation between complete rigid modules in . This yields cluster algebra structures on the coordinate rings of the partial flag varieties attached to .
Download Results (CSV)