Partial flag varieties and preprojective algebras
Christof Geiß[1]; Bernard Leclerc[2]; Jan Schröer[3]
- [1] Universidad Nacional Autónoma de México Instituto de Matemáticas 04510 México D.F. (México)
- [2] Université de Caen LMNO UMR 6139 14032 Caen cedex (France)
- [3] Universität Bonn Mathematisches Institut Beringstr. 1 53115 Bonn (Germany)
Annales de l’institut Fourier (2008)
- Volume: 58, Issue: 3, page 825-876
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topGeiß, Christof, Leclerc, Bernard, and Schröer, Jan. "Partial flag varieties and preprojective algebras." Annales de l’institut Fourier 58.3 (2008): 825-876. <http://eudml.org/doc/10336>.
@article{Geiß2008,
abstract = {Let $\Lambda $ be a preprojective algebra of type $A, D, E$, and let $G$ be the corresponding semisimple simply connected complex algebraic group. We study rigid modules in subcategories $\{\rm Sub\,\} Q$ for $Q$ an injective $\Lambda $-module, and we introduce a mutation operation between complete rigid modules in $\{\rm Sub\,\} Q$. This yields cluster algebra structures on the coordinate rings of the partial flag varieties attached to $G$.},
affiliation = {Universidad Nacional Autónoma de México Instituto de Matemáticas 04510 México D.F. (México); Université de Caen LMNO UMR 6139 14032 Caen cedex (France); Universität Bonn Mathematisches Institut Beringstr. 1 53115 Bonn (Germany)},
author = {Geiß, Christof, Leclerc, Bernard, Schröer, Jan},
journal = {Annales de l’institut Fourier},
keywords = {Flag variety; preprojective algebra; Frobenius category; rigid module; mutation; cluster algebra; semicanonical basis; partial flag varieties; preprojective algebras; semicanonical bases; parabolic subgroups; semisimple algebraic groups; injective modules; quadrics; rigid modules; cluster algebras; Grassmannians},
language = {eng},
number = {3},
pages = {825-876},
publisher = {Association des Annales de l’institut Fourier},
title = {Partial flag varieties and preprojective algebras},
url = {http://eudml.org/doc/10336},
volume = {58},
year = {2008},
}
TY - JOUR
AU - Geiß, Christof
AU - Leclerc, Bernard
AU - Schröer, Jan
TI - Partial flag varieties and preprojective algebras
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 3
SP - 825
EP - 876
AB - Let $\Lambda $ be a preprojective algebra of type $A, D, E$, and let $G$ be the corresponding semisimple simply connected complex algebraic group. We study rigid modules in subcategories ${\rm Sub\,} Q$ for $Q$ an injective $\Lambda $-module, and we introduce a mutation operation between complete rigid modules in ${\rm Sub\,} Q$. This yields cluster algebra structures on the coordinate rings of the partial flag varieties attached to $G$.
LA - eng
KW - Flag variety; preprojective algebra; Frobenius category; rigid module; mutation; cluster algebra; semicanonical basis; partial flag varieties; preprojective algebras; semicanonical bases; parabolic subgroups; semisimple algebraic groups; injective modules; quadrics; rigid modules; cluster algebras; Grassmannians
UR - http://eudml.org/doc/10336
ER -
References
top- M. Auslander, S. Smalø, Almost split sequences in subcategories, J. Algebra 69 (1981), 426-454 Zbl0457.16017MR617088
- Maurice Auslander, Idun Reiten, Homologically finite subcategories, Representations of algebras and related topics (Kyoto, 1990) 168 (1992), 1-42, Cambridge Univ. Press Zbl0774.16005MR1211476
- R. Bautista, R. Martinez, Representations of partially ordered sets and 1-Gorenstein Artin algebras, Proceedings, Conference on Ring Theory, Antwerp, 1978 (1979), 385-433, Dekker Zbl0707.16003MR563305
- A. Berenstein, S. Fomin, A. Zelevinsky, Cluster algebras III. Upper bounds and double Bruhat cells, Duke Math. J. 126 (2005), 1-52 Zbl1135.16013MR2110627
- A. Borel, Linear algebraic groups, (1991), Springer Zbl0726.20030MR1102012
- N. Bourbaki, Groupes et algèbres de Lie, (1968), Hermann Zbl0483.22001MR240238
- A. Buan, O. Iyama, I. Reiten, J. Scott, Cluster structures for 2-Calabi-Yau categories and unipotent groups Zbl1181.18006
- A. Buan, R. Marsh, M. Reineke, I. Reiten, G. Todorov, Tilting theory and cluster combinatorics, Adv. Math. 204 (2006), 572-618 Zbl1127.16011MR2249625
- S. Fomin, A. Zelevinsky, Double Bruhat cells and total positivity, J. Amer. Math. Soc. 12 (1999), 335-380 Zbl0913.22011MR1652878
- S. Fomin, A. Zelevinsky, Cluster algebras. I. Foundations, J. Amer. Math. Soc. 15 (2002), 497-529 Zbl1021.16017MR1887642
- S. Fomin, A. Zelevinsky, Cluster algebras II. Finite type classification, Invent. Math. 154 (2003), 63-121 Zbl1054.17024MR2004457
- C. Geiß, B. Leclerc, J. Schröer, Cluster algebra structures and semicanonical bases for unipotent subgroups Zbl1131.17006
- C. Geiß, B. Leclerc, J. Schröer, Semicanonical bases and preprojective algebras, Ann. Sci. Ecole Norm. Sup. 38 (2005), 193-253 Zbl1131.17006MR2144987
- C. Geiß, B. Leclerc, J. Schröer, Rigid modules over preprojective algebras, Invent. Math. 165 (2006), 589-632 Zbl1167.16009MR2242628
- C. Geiß, B. Leclerc, J. Schröer, Verma modules and preprojective algebras, Nagoya Math. J. 182 (2006), 241-258 Zbl1137.17021MR2235343
- C. Geiß, B. Leclerc, J. Schröer, Auslander algebras and initial seeds for cluster algebras, J. London Math. Soc. 75 (2007), 718-740 Zbl1135.17007MR2352732
- C. Geiß, B. Leclerc, J. Schröer, Semicanonical bases and preprojective algebras II: A multiplication formula, Compositio Math. 143 (2007), 1313-1334 Zbl1132.17004MR2360317
- C. Geiß, J. Schröer, Extension-orthogonal components of preprojective varieties, Trans. Amer. Math. Soc. 357 (2005), 1953-1962 Zbl1111.14045MR2115084
- M. Gekhtman, M. Shapiro, A. Vainshtein, Cluster algebras and Poisson geometry, Moscow Math. J. 3 (2003), 899-934 Zbl1057.53064MR2078567
- D. Happel, Triangulated categories in the representation theory of finite-dimensional algebras, (1988), Cambridge University Press, Cambridge Zbl0635.16017MR935124
- M. Hoshino, On splitting torsion theories induced by tilting modules, Comm. Alg. 11 (1983), 427-439 Zbl0506.16018MR689417
- M. Kashiwara, Y. Saito, Geometric construction of crystal bases, Duke Math. J. 89 (1997), 9-36 Zbl0901.17006MR1458969
- B. Keller, On triangulated orbit categories, Doc. Math. 10 (2005), 551-581 Zbl1086.18006MR2184464
- M. Kleiner, Approximations and almost split sequences in homologically finite subcategories, J. Algebra 198 (1997), 135-163 Zbl0903.16014MR1482979
- V. Lakshmibai, N. Gonciulea, Flag varieties, 63 (2001), Hermann Zbl1136.14306
- G. Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc. 3 (1990), 447-498 Zbl0703.17008MR1035415
- G. Lusztig, Quivers, perverse sheaves, and quantized enveloping algebras, J. Amer. Math. Soc. 4 (1991), 365-421 Zbl0738.17011MR1088333
- G. Lusztig, Introduction to quantum groups, (1993), Birkhäuser Zbl0788.17010MR1227098
- A. Postnikov, Total positivity, grassmannians and networks
- M. C. Ringel, The preprojective algebra of a quiver, Algebras and Modules II, (Geiranger, 1996), CMS Conf. Proc. 24 (1998), 467-480 Zbl0928.16012MR1648647
- J. Scott, Grassmannians and cluster algebras, Proc. London Math. Soc. 92 (2006), 345-380 Zbl1088.22009MR2205721
- Ahmet I. Seven, Recognizing cluster algebras of finite type, Electron. J. Combin. 14 (2007) Zbl1114.05103MR2285804
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.