Partial flag varieties and preprojective algebras

Christof Geiß[1]; Bernard Leclerc[2]; Jan Schröer[3]

  • [1] Universidad Nacional Autónoma de México Instituto de Matemáticas 04510 México D.F. (México)
  • [2] Université de Caen LMNO UMR 6139 14032 Caen cedex (France)
  • [3] Universität Bonn Mathematisches Institut Beringstr. 1 53115 Bonn (Germany)

Annales de l’institut Fourier (2008)

  • Volume: 58, Issue: 3, page 825-876
  • ISSN: 0373-0956

Abstract

top
Let Λ be a preprojective algebra of type A , D , E , and let G be the corresponding semisimple simply connected complex algebraic group. We study rigid modules in subcategories Sub Q for Q an injective Λ -module, and we introduce a mutation operation between complete rigid modules in Sub Q . This yields cluster algebra structures on the coordinate rings of the partial flag varieties attached to  G .

How to cite

top

Geiß, Christof, Leclerc, Bernard, and Schröer, Jan. "Partial flag varieties and preprojective algebras." Annales de l’institut Fourier 58.3 (2008): 825-876. <http://eudml.org/doc/10336>.

@article{Geiß2008,
abstract = {Let $\Lambda $ be a preprojective algebra of type $A, D, E$, and let $G$ be the corresponding semisimple simply connected complex algebraic group. We study rigid modules in subcategories $\{\rm Sub\,\} Q$ for $Q$ an injective $\Lambda $-module, and we introduce a mutation operation between complete rigid modules in $\{\rm Sub\,\} Q$. This yields cluster algebra structures on the coordinate rings of the partial flag varieties attached to $G$.},
affiliation = {Universidad Nacional Autónoma de México Instituto de Matemáticas 04510 México D.F. (México); Université de Caen LMNO UMR 6139 14032 Caen cedex (France); Universität Bonn Mathematisches Institut Beringstr. 1 53115 Bonn (Germany)},
author = {Geiß, Christof, Leclerc, Bernard, Schröer, Jan},
journal = {Annales de l’institut Fourier},
keywords = {Flag variety; preprojective algebra; Frobenius category; rigid module; mutation; cluster algebra; semicanonical basis; partial flag varieties; preprojective algebras; semicanonical bases; parabolic subgroups; semisimple algebraic groups; injective modules; quadrics; rigid modules; cluster algebras; Grassmannians},
language = {eng},
number = {3},
pages = {825-876},
publisher = {Association des Annales de l’institut Fourier},
title = {Partial flag varieties and preprojective algebras},
url = {http://eudml.org/doc/10336},
volume = {58},
year = {2008},
}

TY - JOUR
AU - Geiß, Christof
AU - Leclerc, Bernard
AU - Schröer, Jan
TI - Partial flag varieties and preprojective algebras
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 3
SP - 825
EP - 876
AB - Let $\Lambda $ be a preprojective algebra of type $A, D, E$, and let $G$ be the corresponding semisimple simply connected complex algebraic group. We study rigid modules in subcategories ${\rm Sub\,} Q$ for $Q$ an injective $\Lambda $-module, and we introduce a mutation operation between complete rigid modules in ${\rm Sub\,} Q$. This yields cluster algebra structures on the coordinate rings of the partial flag varieties attached to $G$.
LA - eng
KW - Flag variety; preprojective algebra; Frobenius category; rigid module; mutation; cluster algebra; semicanonical basis; partial flag varieties; preprojective algebras; semicanonical bases; parabolic subgroups; semisimple algebraic groups; injective modules; quadrics; rigid modules; cluster algebras; Grassmannians
UR - http://eudml.org/doc/10336
ER -

References

top
  1. M. Auslander, S. Smalø, Almost split sequences in subcategories, J. Algebra 69 (1981), 426-454 Zbl0457.16017MR617088
  2. Maurice Auslander, Idun Reiten, Homologically finite subcategories, Representations of algebras and related topics (Kyoto, 1990) 168 (1992), 1-42, Cambridge Univ. Press Zbl0774.16005MR1211476
  3. R. Bautista, R. Martinez, Representations of partially ordered sets and 1-Gorenstein Artin algebras, Proceedings, Conference on Ring Theory, Antwerp, 1978 (1979), 385-433, Dekker Zbl0707.16003MR563305
  4. A. Berenstein, S. Fomin, A. Zelevinsky, Cluster algebras III. Upper bounds and double Bruhat cells, Duke Math. J. 126 (2005), 1-52 Zbl1135.16013MR2110627
  5. A. Borel, Linear algebraic groups, (1991), Springer Zbl0726.20030MR1102012
  6. N. Bourbaki, Groupes et algèbres de Lie, (1968), Hermann Zbl0483.22001MR240238
  7. A. Buan, O. Iyama, I. Reiten, J. Scott, Cluster structures for 2-Calabi-Yau categories and unipotent groups Zbl1181.18006
  8. A. Buan, R. Marsh, M. Reineke, I. Reiten, G. Todorov, Tilting theory and cluster combinatorics, Adv. Math. 204 (2006), 572-618 Zbl1127.16011MR2249625
  9. S. Fomin, A. Zelevinsky, Double Bruhat cells and total positivity, J. Amer. Math. Soc. 12 (1999), 335-380 Zbl0913.22011MR1652878
  10. S. Fomin, A. Zelevinsky, Cluster algebras. I. Foundations, J. Amer. Math. Soc. 15 (2002), 497-529 Zbl1021.16017MR1887642
  11. S. Fomin, A. Zelevinsky, Cluster algebras II. Finite type classification, Invent. Math. 154 (2003), 63-121 Zbl1054.17024MR2004457
  12. C. Geiß, B. Leclerc, J. Schröer, Cluster algebra structures and semicanonical bases for unipotent subgroups Zbl1131.17006
  13. C. Geiß, B. Leclerc, J. Schröer, Semicanonical bases and preprojective algebras, Ann. Sci. Ecole Norm. Sup. 38 (2005), 193-253 Zbl1131.17006MR2144987
  14. C. Geiß, B. Leclerc, J. Schröer, Rigid modules over preprojective algebras, Invent. Math. 165 (2006), 589-632 Zbl1167.16009MR2242628
  15. C. Geiß, B. Leclerc, J. Schröer, Verma modules and preprojective algebras, Nagoya Math. J. 182 (2006), 241-258 Zbl1137.17021MR2235343
  16. C. Geiß, B. Leclerc, J. Schröer, Auslander algebras and initial seeds for cluster algebras, J. London Math. Soc. 75 (2007), 718-740 Zbl1135.17007MR2352732
  17. C. Geiß, B. Leclerc, J. Schröer, Semicanonical bases and preprojective algebras II: A multiplication formula, Compositio Math. 143 (2007), 1313-1334 Zbl1132.17004MR2360317
  18. C. Geiß, J. Schröer, Extension-orthogonal components of preprojective varieties, Trans. Amer. Math. Soc. 357 (2005), 1953-1962 Zbl1111.14045MR2115084
  19. M. Gekhtman, M. Shapiro, A. Vainshtein, Cluster algebras and Poisson geometry, Moscow Math. J. 3 (2003), 899-934 Zbl1057.53064MR2078567
  20. D. Happel, Triangulated categories in the representation theory of finite-dimensional algebras, (1988), Cambridge University Press, Cambridge Zbl0635.16017MR935124
  21. M. Hoshino, On splitting torsion theories induced by tilting modules, Comm. Alg. 11 (1983), 427-439 Zbl0506.16018MR689417
  22. M. Kashiwara, Y. Saito, Geometric construction of crystal bases, Duke Math. J. 89 (1997), 9-36 Zbl0901.17006MR1458969
  23. B. Keller, On triangulated orbit categories, Doc. Math. 10 (2005), 551-581 Zbl1086.18006MR2184464
  24. M. Kleiner, Approximations and almost split sequences in homologically finite subcategories, J. Algebra 198 (1997), 135-163 Zbl0903.16014MR1482979
  25. V. Lakshmibai, N. Gonciulea, Flag varieties, 63 (2001), Hermann Zbl1136.14306
  26. G. Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc. 3 (1990), 447-498 Zbl0703.17008MR1035415
  27. G. Lusztig, Quivers, perverse sheaves, and quantized enveloping algebras, J. Amer. Math. Soc. 4 (1991), 365-421 Zbl0738.17011MR1088333
  28. G. Lusztig, Introduction to quantum groups, (1993), Birkhäuser Zbl0788.17010MR1227098
  29. A. Postnikov, Total positivity, grassmannians and networks 
  30. M. C. Ringel, The preprojective algebra of a quiver, Algebras and Modules II, (Geiranger, 1996), CMS Conf. Proc. 24 (1998), 467-480 Zbl0928.16012MR1648647
  31. J. Scott, Grassmannians and cluster algebras, Proc. London Math. Soc. 92 (2006), 345-380 Zbl1088.22009MR2205721
  32. Ahmet I. Seven, Recognizing cluster algebras of finite type, Electron. J. Combin. 14 (2007) Zbl1114.05103MR2285804

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.