The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 20 of 45

Showing per page

Order by Relevance | Title | Year of publication

On countable dense and strong n-homogeneity

Jan van Mill — 2011

Fundamenta Mathematicae

We prove that if a space X is countable dense homogeneous and no set of size n-1 separates it, then X is strongly n-homogeneous. Our main result is the construction of an example of a Polish space X that is strongly n-homogeneous for every n, but not countable dense homogeneous.

On Countable Dense and Strong Local Homogeneity

Jan van Mill — 2005

Bulletin of the Polish Academy of Sciences. Mathematics

We present an example of a connected, Polish, countable dense homogeneous space X that is not strongly locally homogeneous. In fact, a nontrivial homeomorphism of X is the identity on no nonempty open subset of X.

Page 1 Next

Download Results (CSV)