We characterize all subsets of such that
for every bounded parabolic function on . The closely related problem of representing functions as sums of Weierstrass kernels corresponding to points of is also considered. The results provide a parabolic counterpart to results for classical harmonic functions in a ball, see References. As a by-product the question of representability of probability continuous distributions as sums of multiples of normal distributions is investigated.
Let be a positive number or . We characterize all subsets of such that
for every positive parabolic function on in terms of coparabolic (minimal) thinness of the set , where and is the “heat ball” with the “center” and radius . Examples of different types of sets which can be used instead of “heat balls” are given. It is proved that (i) is equivalent to the condition for every bounded parabolic function on and hence to all equivalent conditions given in the article [7]....
Let , , be the -dimensional unit sphere, be the surface measure on and . We characterize all subsets of such that
for every positive solution of the Helmholtz equation on . A closely related problem of representing functions of as sums of blocks of the form corresponding to points of is also considered. The results provide a counterpart to results for classical harmonic functions in a ball, and for parabolic functions on a slab, see References.
Download Results (CSV)