Pole placement and related problems
It is well–known that every system with commensurable delays can be assigned a finite spectrum by feedback, provided that it is spectrally controllable. In general, the feedback involves distributed delays, and it is defined in terms of a Volterra equation. In the case of multivariable time–delay systems, one would be interested in assigning not only the location of the poles of the closed–loop system, but also their multiplicities, or, equivalently, the invariant factors of the closed–loop system....
This paper presents a new approach to robust adaptive control, using fractional order systems as parallel feedforward in the adaptation loop. The problem is that adaptive control systems may diverge when confronted with finite sensor and actuator dynamics, or with parasitic disturbances. One of the classical robust adaptive control solutions to these problems makes use of parallel feedforward and simplified adaptive controllers based on the concept of positive realness. The proposed control scheme...
The matrix pencil completion problem introduced in [J. J. Loiseau, S. Mondié, I. Zaballa, and P. Zagalak: Assigning the Kronecker invariants to a matrix pencil by row or column completions. Linear Algebra Appl. 278 (1998)] is reconsidered and the latest results achieved in that field are discussed.
The problem of pole assignment by state feedback in the class of non-square linear systems is considered in the paper. It is shown that the problem is solvable under the assumption of weak regularizability, a newly introduced concept that can be viewed as a generalization of the regularizability of square systems. Necessary conditions of solvability for the problem of pole assignment are established. It is also shown that sufficient conditions can be derived in some special cases. Some conclusions...
Page 1