The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

Majorantes surharmoniques minimales d'une fonction continue

Jean-Jacques Moreau — 1971

Annales de l'institut Fourier

Soit Ω , ouvert de R n et f : Ω R , continue. On dit qu’une majorante surharmonique de f dans Ω est minimale si cette majorante surharmonique est harmonique dans l’ensemble (ouvert) où elle diffère de f . Beaucoup de propriétés de ces fonctions sont semblables à celles des fonctions harmoniques 0 (lesquelles correspondent à f = 0 ) ; par exemple la famille entière est uniformément équicontinue dans chaque partie compacte de Ω , relativement à la structure uniforme de R . On traite le problème de Dirichlet : détermination...

Page 1

Download Results (CSV)